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P(X <0| X*>4)=1 since X*>4 implies that either X >2 or

X <—=2. The first of these options is impossible (outside the range
of X), so X <-2 hence X <O0;
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The range of Y is [0,.0) hence taking the square root of values on
this range gives that Z also has range [0,x).

Z =+ henceY =Z? and 3—;:22.
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E(T)=6 and E(S)=6.

P(S =T)=0 since is it impossible (probability zero) both the first 2
and the first 6 are both obtained on the same roll.

If we are told that the first roll shows a 6, then S =1. Knowing that
we have already taken one roll and not obtained a 2, the expected
number of rolls to obtain the first two is 1 (acknowledging the first
roll which landed 6) plus the number of rolls we expect to make

until we first see a 2.

1

The range of W ~exp(A) is [0,%0). The transformation Z “W" is

1 1
monotonic with 0" =0 and WY —» o as W — o so the range of
Zis also [0,).
Ae ™ w € [0,0)

W has density function f(w) = L
0 otherwise
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For the transformation Z =W", W =Z" and hence C;—V;/ =yZ'*.

The density function of Z is therefore

y—1.—AZ"
f(z) = Ayz" e Z €[0,) .
0 otherwise

Comparing this to the density function of T ~Weibull (8,n)(given),
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we see that Z ~Weibull y,[%)v
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We see this by substituting 8=y and n=(%jy into the density

function for T ~Weibull (8,n).



