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ii) 2( 0 | 4) 1P X X  =  since 2 4X   implies that either 2X   or 

2X  − . The first of these options is impossible (outside the range 

of X), so 2X  −  hence 0X  ;  
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2.  

i) The range of Y is [0, )  hence taking the square root of values on 

this range gives that Z also has range [0, ) . 

ii) Z Y=  hence 2Y Z=  and 2
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3. i) ( ) 6E T =  and ( ) 6E S = . 

ii) ( ) 0P S T= =  since is it impossible (probability zero) both the first 2 

and the first 6 are both obtained on the same roll. 

iii) If we are told that the first roll shows a 6, then 1S = . Knowing that 

we have already taken one roll and not obtained a 2, the expected 

number of rolls to obtain the first two is 1 (acknowledging the first 

roll which landed 6) plus the number of rolls we expect to make 

until we first see a 2. 

 

4.  

i) The range of ~ exp( )W λ  is [0, ) . The transformation 
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For the transformation 
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The density function of Z is therefore  
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iv) Comparing this to the density function of ( )~ ,T Weibull β η (given), 

we see that 
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We see this by substituting 
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