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Reducibility

I We show a problem decidable/undecidable by reducing it to another
problem. One type of reduction: mapping reduction.

Definition

I Let A, B be languages over Σ. A is mapping reducible to B, written
A ≤m B, if there is a computable function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B.

I Function f is called the reduction of A to B.

Definition

A function f : Σ∗ → Σ∗ is a computable function if some Turing
machine M, on every input w , halts with just f (w) on its tape.

I A TM computes a function by starting with the input to the function on the
tape and halting with the output of the function on the tape.
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Reducibility

Definition

I Let A, B be languages over Σ. A is mapping reducible to B, written
A ≤m B, if there is a computable function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B.

I Function f is a reduction from A to B.

I The idea here is that if B is decidable, then A must be decidable, too.

I (The proof is shown in the next slide).

I By contraposition, if A is not decidable, then B is not decidable.

Note that A could be decidable and B undecidable (consider what
happens when f is not surjective).
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Mapping Reducibility

Theorem

If A ≤m B and B is decidable, then A is decidable.

Proof.

I Suppose A ≤m B and B is decidable. Then there exists a TM M to
decide B, and there is a computable function f such that w ∈ A if
and only if f (w) ∈ B.

I We construct a decider N for A that acts as follows:

I On input w , compute f (w).
I Run M on f (w).
I If M accepts f (w), then accept. Otherwise, reject.
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Reducibility

I Note that A could be decidable and B undecidable.

I Consider what happens when f is not surjective.
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Undecidable Problems from Language Theory: HALTTM

Recall that the following problem is undecidable.

ATM = {〈M,w〉|M is a TM and M accepts w}.

I Before, we called this the “halting problem”.

I Really, we should call it the “acceptance problem” for TMs.

I And we should call the language HALTTM below the halting problem.

HALTTM = {〈M,w〉|M is a TM and M halts on input w} is undecidable.

I We use the acceptance problem to prove HALTTM undecidable.

Theorem

HALTTM is undecidable.

CSCI 2670 Undecidable Problems and Reducibility



Undecidable Problems from Language Theory: HALTTM

Theorem

HALTTM = {〈M,w〉|M is a TM and M halts on input w} is undecidable.

I Suppose we want to decide ATM

I On input 〈M,w〉, if M halts on w , then it’s “safe” to run M on w .

I If M accepts w , then we accept 〈M,w〉.
I If M rejects w , then we reject 〈M,w〉.
I So...

if we could decide whether a TM halts on its input, we could decide ATM .

I That’s the idea in the proof. We reduce ATM to HALTTM .

I We assume HALTTM decidable.
I We then show that a decider for HALTTM can be used to decide ATM .
I Since ATM is undecidable, HALTTM must be undecidable.

CSCI 2670 Undecidable Problems and Reducibility



Undecidable Problems from Language Theory: HALTTM

Theorem

HALTTM = {〈M,w〉|M is a TM and M halts on input w} is undecidable.

Proof.

I Suppose for a proof by contradiction that HALTTM is decidable.
Then it has a TM R that decides it.

I We construct a TM S to decide ATM :

I On input 〈M,w〉:
I Run R on input 〈M,w〉.
I If R rejects, then reject.
I If R accepts, then run M on input w .
I Note that M must halt on w .
I If M accepts w , then accept. Otherwise reject.

I S clearly decides ATM . But ATM is undecidable....

I A contradiction, and so HALTTM is not decidable.
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Undecidable Problems from Language Theory: ETM

I In the previous problem, we reduced ATM to HALTTM .

I Since ATM is undecidable, HALTTM must be undecidable, too.

I This sort of reduction is a standard technique.

I We use it again below.

Theorem

ETM = {〈M〉|M is a TM and L(M) = ∅} is undecidable.

I The idea is to assume ETM is decidable and then use that to decide ATM .

I Given a decider R for ETM , we use it in a decider S for ATM .

I Note that if the input to S is 〈M,w〉, we can create a new TM M ′ that
only accepts w or else nothing.

I This is the secret to constructing S .
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Undecidable Problems from Language Theory: ETM

Theorem

ETM = {〈M〉|M is a TM and L(M) = ∅} is undecidable.

Proof.

I Suppose ETM is decidable and let R be a decider for it.

I From R, we construct a decider S for ATM , which works as follows.

I On input 〈M,w〉:
1. Construct TM M ′: On any input v , if v 6= w , then reject.

Otherwise, run M on v . If M accepts, then accept.
Note: v ∈ L(M ′) if and only if v = w and w ∈ L(M).

2. Run R on 〈M ′〉.
3. If R accepts 〈M ′〉, then L(M ′) = ∅ (meaning w /∈ L(M)), and

so reject.
4. If R rejects 〈M ′〉, then L(M ′) = {w} (meaning w ∈ L(M)), and

so accept.

I S decides ATM . A contradiction!

I And so ETM must be undecidable.
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Rice’s Theorem

I Rice’s theorem asserts that all “nontrivial” properties of Turing machines
are undecidable. (To determine whether a given Turing machine’s
language has property P is undecidable.)

Theorem

I Let P be a language consisting of TM descriptions such that

1. P is nontrivial-it contains some, but not all, TM descriptions.
2. P is a property of the TM’s language (Here, M1 and M2 are

any TMs.)

Whenever L(M1) = L(M2), we have 〈M1〉 ∈ P iff 〈M2〉 ∈ P.

I Then P is undecidable.
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Undecidable Problems from Language Theory:
REGULARTM

I For instance, determining whether the language of a TM is regular is
undecidable.

Theorem

REGULARTM = {〈M〉|M is a TM and L(M) is regular} is undecidable.

I We can prove this by reduction from ATM .

I We assume REGULARTM has decider R and then use it to decide ATM .

I On input 〈M,w〉 We construct a new machine M2 such that L(M2) is
regular iff w ∈ L(M).

I We then run R on 〈M2〉.
I Note that we never actually run M2. We instead use R to decide a

property of M2.

I The difficult part is knowing how to construct M2 from M and w .
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Undecidable Problems from Language Theory:
REGULARTM

Theorem

REGULARTM = {〈M〉|M is a TM and L(M) is regular} is undecidable.

I Given TM M and string w , construct M2 which operates as follows:

I On input x :
I If x has form 1n0n, then accept.
I If not, then run M on w (not x) and accept x if M accepts w .

I L(M2) = Σ∗ if w ∈ L(M),

I Observe that 1n0n is nonregular and Σ∗ is regular.

I M2 recognizes a regular language if and only if M accepts w .
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Undecidable Problems from Language Theory:
REGULARTM

Theorem

REGULARTM = {〈M〉|M is a TM and L(M) is regular} is undecidable.

Proof.

Let R be a TM that decides REGULARTM and construct TM S to decide ATM .
S = “On input 〈M,w〉, where M is a TM and w is a string:

1. Construct the following TM M2.

2. M2 = “On input x :

I If x has the form 1n0n, accept.
I If x does not have this form, run M on input w and accept if M

accepts w .”

3. Run R on input 〈M2〉.
4. If R accepts, accept; if R rejects, reject.”
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Undecidable Problems from Language Theory

Similarly, determining the following properties of TMs is undecidable.

I CFTM = {〈M〉|M is a TM and L(M) is context free}
I FINITETM = {〈M〉|M is a TM and L(M) is finite}
I DECIDABLETM = {〈M〉|M is a TM and L(M) is decidable}
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Undecidable Problems from Language Theory: EQTM

The idea is simple: if EQTM were decidable, ETM also would be
decidable, by giving a reduction from ETM to EQTM .

Theorem

The following language is undecidable.

EQTM = {〈M1,M2〉|M1,M2 are TMs and L(M1) = L(M2)}.

I The ETM problem is a special case of the EQTM problem wherein one of
the machines is fixed to recognize the empty language.

I The idea here is to construct a TM M2 such that L(M2) = ∅.

I Then use this to determine whether L(M1) = ∅.
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Undecidable Problems from Language Theory: EQTM

I Recall that EQDFA is decidable.

I EQTM isn’t, as can be proved via reduction from ETM .

Theorem

The following language is undecidable.

EQTM = {〈M1,M2〉|M1,M2 are TMs and L(M1) = L(M2)}.

Proof.

I Suppose that EQTM is decidable and let R be a decider for it.

I We construct a TM S to decide ETM as follows.

I S = “On Input 〈M〉, where M is a TM:

1. Run R on input 〈M,M1〉, where M1 is a TM that rejects all
inputs.

2. If R accepts 〈M,M1〉, then accept (L(M) = L(M1) = ∅);
3. if R rejects 〈M,M1〉, then reject (L(M) 6= ∅.”
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Configuration Histories

I Recall that the state, tape contents, and tape head position of a TM
constitute a configuration.

I Using configurations, we can define computation histories.

Definition

An accepting computation history of TM M on string w is a finite
sequence of configurations C1, . . ., Cn, where

I C1 is the start configuration of M on w ,

I Cn is an accepting configuration, and

I for each 1 ≤ i < n Ci+1 follows from Ci via M’s transition function.

A rejecting computation history is defined similarly, save that Cn is a
rejecting configuration.

I Deterministic TMs have ≤ 1 computation history for an input w .

I Computation histories are useful in proving properties of a restricted type
of TM called a linear bounded automaton.
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Linear Bounded Automata

Definition

A Linear Bounded Automaton is a Turing machine that may only use the
portion of tape originally occupied by the input string w . Its tapehead cannot
move beyond the left- or rightmost tape cells. Hence we say that for an input
of length n, the amount of memory available is linear in n.

I LBAs are restricted TMs, but they are powerful.

I The languages accepted by LBAs are called context sensitive.

I These are called Type-1 languages in the Chomsky Hierarchy.

Type Description Accepting Machine Grammar
0 Turing Recognizable Turing Machine Unrestricted

1 Context Sensitive LBA Context Sensitive

2 Context Free PDA Context Free

3 Regular DFAs Regular

I Each class n is a proper subset of class n − 1 (there are some caveats).
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Linear Bounded Automata: ALBA is decidable

I Recall that the following were decidable: ADFA, ACFG . (In fact, they
are decidable by LBAs).

I The language ATM was not decidable.

I The language ALBA is, however.

Theorem

ALBA = {〈M,w〉|M is an LBA and w ∈ L(M)} is decidable.

To prove this we need the following lemma, which asserts that there is a
finite number of configurations for an LBA with input length n.

Lemma

I Let M be an LBA with |Q| = q, |Γ| = g, and let w ∈ Σ∗.

I For a tape of length n, there are qngn possible configurations of M.

So, if M is a LBA and w ∈ L(M) w will be accepted within qngn steps.
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Linear Bounded Automata: ALBA is decidable

Theorem

ALBA = {〈M,w〉|M is an LBA and w ∈ L(M)} is decidable.

Proof.

We construct a TM L to decide ALBA. On input 〈M,w〉:
I Run M on w , counting how many steps have been taken.

I If M accepts (rejects) w before qngn steps, then accept (reject).

I If M has not halted within qngn steps, then reject.

I If the M has not halted within qngn steps, it never will.

I Instead, it will begin to repeat steps it’s previously entered.

CSCI 2670 Undecidable Problems and Reducibility



Linear Bounded Automata: ELBA is undecidable

I Not all problems involving LBAs are decidable.

I Although EDFA and ECFG are decidable, ELBA is not.

Theorem

ELBA = {〈M〉|M is an LBA and L(M) = ∅} is undecidable.

I The proof is via reduction from ATM to ELBA.

I From input 〈M,w〉, an LBA B is constructed to accept all and only
accepting computation histories of M on w .

1. On input x , B checks that x is C1#C2# . . .#Cn, where C1 is the
start configuration of M on w and Cn is an accepting configuration.
If not, it rejects.

2. B then checks to see that each Ci+1 follows from Ci . If so, it
accepts. Otherwise, it rejects.

3. Observe this can all be done by marking symbols on B’s tape, and
without exceeding the tape boundaries.
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Linear Bounded Automata: ELBA is undecidable

Theorem

ELBA = {〈M〉|M is an LBA and L(M) = ∅} is undecidable.

I Note that B is constructed from TM M and string w .

I B accepts all and only accepting computation histories of M on w .

I So, if we had a decider R for ELBA we can run it on 〈B〉.
I This could be used to decide ATM .
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Linear Bounded Automata: ELBA is undecidable

Theorem

ELBA = {〈M〉|M is an LBA and L(M) = ∅} is undecidable.

Proof.

I Suppose ELBA is decidable, and let R be a decider for it.

I We construct a decider S for ATM as follows.

I On input 〈M,w〉,
I Construct B as in the previous slide.

I Run R on 〈B〉.
1. If R accepts, then reject (there are no accepting computation

histories of M on w).
2. If R rejects, then accept (there is an accepting computation

history of M on w).

I Observe that B is never actually executed. It’s just input into R.
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Undecidable Languages: ALLCFG

I Computation histories can be used to show properties of other languages.

I For instance, ALLCFG is undecidable.

Theorem

ALLCFG = {〈G 〉|G is a CFG and L(G ) = Σ∗} is undecidable.

I To prove this, we show that for a TM M and string w , we can construct a
special PDA D.

I D accepts all and only strings that are not valid accepting computation
histories C1,C2, . . . ,Cn of M on w .

I For the PDA (for technical reasons), we encode a history with every other
configuration reversed:

C1#CR
2 #C3#CR

4 . . .#Cn.
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Undecidable Languages: ALLCFG

Theorem

ALLCFG = {〈G 〉|G is a CFG and L(G ) = Σ∗} is undecidable.

I From a TM M and an input w , we construct a PDA D that generates all
strings if and only if M does not accept w .

I So, if M does accept w , D does not generate some particular string.

I This particular string is the accepting computation history for M on w .

I That is, D is designed to generate all strings that are not accepting
computation histories for M on w .
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Undecidable Languages: ALLCFG

I A computation history fails to be an accepting one if:

1. C1 is not the start configuration;
2. Cn is not an accepting configuration;
3. some Ci+1 doesn’t follow from Ci .

PDA D nondeterministically chooses a failure to check.

I To check C1, D reads through C1, accepting if the first symbol is
not qstart or if the string between qstart and the first # is not w ..

I To check Cn, D reads through Cn, accepting if a state other than
qaccept appears (or more than one state appears).
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Undecidable Languages: ALLCFG

I To check for a failure in δ, D selects a Ci to compare to Ci+1.

I It pushes Ci onto the stack.
I It then reads through Ci+1, comparing symbols to Ci .
I Ci is reversed relative to Ci+1. The symbols popped from the

stack should match those read from Ci+1 (except for changes
due to δ).

I D accepts if the transition is invalid.

I Observe that D only rejects accepting computation histories of M on
w .

I And so if D accepts all strings, then there are no such histories (and
so M does not accept w).

I As such, we could use a decider R for ALLCFG to decide ATM .
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Undecidable Languages: ALLCFG

Theorem

ALLCFG = {〈G 〉|G is a CFG and L(G ) = Σ∗} is undecidable.

Proof.

Suppose ALLCFG is decidable and let R be a decider for it. We use it to
construct a TM S deciding ATM .

On input 〈M,w〉:

I Construct a PDA D from M and w as described in the previous slide.

I Convert D into a CFG G .

I Run R on 〈G〉.
I If R accepts 〈G〉, then reject (there are no accepting histories).
I If R rejects 〈G〉, then accept (an accepting history exists).
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The Post Correspondence Problem: PCP

The previous problems all dealt with automata. Below is an undecidable
problem involving string manipulation.

(The Post Correspondence Problem (PCP))

Given a set of dominoes P = {[ t1b1 ], [ t2b2 ], . . ., [ tnbn ]}, where each ti and bi

is a string, a match for P is a sequence i1, i2, . . . im such that

ti1ti2 . . . tim = bi1bi2 . . . bim .

PCP = {〈P〉|P is a collection of dominoes with a match}

Example

If P = {[ b
ca ], [ a

ab ], [ caa ], [ abcc ]}, then the following is a match.

[ a
ab ][ b

ca ][ caa ][ a
ab ][ abcc ]

Note that duplicates are possible.
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In-class Questions???

Find a match in the following instance of the Post Correspondence
Problem.

{[ ab
abab ], [ ba ], [ abab ], [ aaa ]}
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The Post Correspondence Problem: PCP

Theorem

PCP = {〈P〉|P is a collection of dominoes with a match} is undecidable.

I The idea behind showing it undecidable is to reduce ATM to it.

I TM configurations are converted into domino sequences.

I For a given M and w , w ∈ L(M) iff a match exists for the dominoes.

I Since ATM is undecidable, PCP must be, too.

(Some restrictions)

For the sake of the problem, we will assume:

I The TM M never attempts to move beyond the left of the tape.

I If w = ε, string t is used for w .

I The match always begins with [ t1b1 ].

These restrictions can all be done away with.
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The Post Correspondence Problem: PCP

Theorem

PCP = {〈P〉|P is a collection of dominoes with a match} is undecidable.

The construction of the problem proceeds in stages.

Part 1: Domino [ t1b1 ] = [ #
#q0w1...wn#

], where w = w1 . . .wn.

I t1 must be extended using more dominoes to match b1.

I We add dominoes to simulate moves (parts 2 and 3).

I We also add dominoes for strings unaffected by moves (part 4).

Part 2: For every δ(q, a) = (r , b,R), q 6= qreject , construct [ qabr ]

Part 3: For every c ∈ Γ and δ(q, a) = (r , b, L), q 6= qreject , construct
[ cqarcb ].

Part 4: For every a ∈ Γ, construct [ aa ].
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The Post Correspondence Problem: PCP

Theorem

PCP = {〈P〉|P is a collection of dominoes with a match} is undecidable.

I Extending t1 forces beginning of a new configuration on the bottom.

I That is, we are forced to simulate the execution of M on w .

I Dominoes are added to fill out the part of the configuration not
affected by a transition.

I To mark configuration ends, we need more dominoes:

Part 5: Add dominoes [## ] and [ #
t# ]. The latter allows us to represent

the empty space at the right of the tape.
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The Post Correspondence Problem: PCP

Suppose a TM M with

I Q = {q0, q1, . . . , q7, qacc}
I Γ = {0, 1, 2, 3,t}
I δ includes the following: δ(q0, 0) = (q7, 2,R),

Using steps 1-5, we can construct the following, representing a partial
computation history of M on w = 0100

The first domino is from Part 1, the second from Part 2, and the rest
from part 4 and 5.
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The Post Correspondence Problem: PCP

Suppose δ(q7, 1) = (q5, 0,R). Then we can form...
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The Post Correspondence Problem: PCP

Suppose δ(q5, 0) = (q9, 2, L). Then we can form...
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The Post Correspondence Problem: PCP

Theorem

PCP = {〈P〉|P is a collection of dominoes with a match} is undecidable.

I Special dominoes are needed to ensure that the end sequence of
dominoes match.

Part 6: For each a ∈ Γ, add dominoes [
aqaccept
qaccept

] and [
qaccepta
qaccept

].

(This is a technical step, intended to remove symbols around qaccept until
it is adjacent only to #).

Part 7: add dominoes [
qaccept##

# ].
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The Post Correspondence Problem: PCP

Suppose we have arrived at the following:

Then we can form the following:

Observe that the 0 to the right of qaccept has been “eaten”.

CSCI 2670 Undecidable Problems and Reducibility



The Post Correspondence Problem: PCP

[
qaccept##

# ] is needed at the very end.
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In-class Questions???

Find a match in the following instance of the Post Correspondence
Problem.

{[ ab
abab ], [ ba ], [ abab ], [ aaa ]}
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Mapping Reducibility

Definition

I Let A and B be languages over Σ.

I A is mapping reducible to B, written A ≤m B, if there is a
computable function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B.

I Function f is a reduction from A to B.

I Reducibility here hinges on there being a computable function.

Definition

A function f : Σ∗ → Σ∗ is a computable function if there exists a
Turing machine M such that on every input w ∈ Σ∗, M halts with just
f (w) on its tape.

I From the definition, one sees that a function is computable if and only if
there is some algorithm that computes it.
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Mapping Reducibility

Show that ≤m is a transitive relation.

Proof.

Suppose that A ≤m B and B ≤m C . Then there are computable
functions f and g such that x ∈ A⇐⇒ f (x) ∈ B and
y ∈ B ⇐⇒ g(y) ∈ C .
Consider that composition function h(x) = g(f (x)). We can build a TM
that computes h as follows:

1. Simulate a TM for f (such a TM exists because we assumed that f
is computable) on input x and call the output y .

2. Simulate a TM for g on y . The output is h(x) = g(f (x)).

Therefore h is a computable function. Moreover, x ∈ A⇐⇒ h(x) ∈ C .
Hence A ≤m C via the reduction function h.
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Mapping Reducibility

I In previous examples, we reduced one problem A to another B and then
leveraged a property of one to conclude something about the other.

I We can formalize what we’ve been doing in a theorem.

Theorem

If A ≤m B and B is decidable, then A is decidable.

Proof.

I Suppose A ≤m B and B is decidable. Then there exists a TM M to
decide B, and there is a computable function f such that w ∈ A if
and only if f (w) ∈ B.

I We construct a decider N for A that acts as follows:

I On input w , compute f (w).
I Run M on f (w).
I If M accepts f (w), then accept. Otherwise, reject.
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Mapping Reducibility

I A corollary to the previous theorem exists.

I Similarly, The theorem can be reformed for recognizability.

Corollary

If A ≤m B and A is undecidable, then B is undecidable.

Theorem

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

I Suppose we have a recognizer R for B. A recognizer S for A would work
as follows: On input w , compute f (w) and run R on f (w). Accept if R
accepts; Reject if R rejects.

Corollary

If A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable.

CSCI 2670 Undecidable Problems and Reducibility



Mapping Reducibility

I If A ≤m B, then there’s a computable function f : Σ∗ → Σ∗ with

w ∈ A if and only if f (w) ∈ B.

I Observe that this implies

I w /∈ A if and only if f (w) /∈ B.
I w ∈ A if and only if f (w) ∈ B.

I Thus, if A ≤m B, then A ≤m B.

I The converse is also true.

I And so the following proposition is true.

Proposition

A ≤m B if and only if A ≤m B.
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Mapping Reducibility

Show that if A is Turing-recognizable and A ≤m A, then A is decidable.

Proof.

I Suppose that A ≤m A, then A ≤m A via the same mapping
reduction.

I Because A is Turing-recognizable, it implies that A is
Turing-recognizable.

I Then A is Turing-recognizable and co-Turing-recognizable.

I Hence it implies that A is decidable.
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Mapping Reducibility

We define a function F showing ATM ≤m EQTM .

F:

I On input 〈M,w〉 construct TMs M1 and M2.

I M1: On any input x , reject.
I M2: On any input x , run M on w . Accept x if M accepts w .

I Output 〈M1,M2〉.

I F is really a Turing machine, one that computes a function.

I M1 is trivial to create, and given M, M2 is also easy to create.

I Observe that if w /∈ L(M), then M2 doesn’t accept any strings.

I If w ∈ L(M), then L(M2) is the set of all strings.

I Thus w ∈ L(M) iff 〈M1,M2〉 ∈ EQTM (i.e., L(M1) 6= L(M2)).

I This shows ATM ≤m EQTM .

I F is a mapping reduction from ATM to EQTM .
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Mapping Reducibility

We define a function G showing ATM ≤m EQTM .

G :

I On input 〈M,w〉 construct TMs M1 and M2.

I M1: On any input x , accept.
I M2: On any input x , run M on w . Accept x if M accepts w .

I Output 〈M1,M2〉.

I F and G are very similar, save that M1 accepts all inputs.

I If w ∈ L(M), then M2 accepts all strings, too.

I If w /∈ L(M), then M2 accepts no strings.

I Thus, w ∈ L(M) iff 〈M1,M2〉 ∈ EQTM (i.e., L(M1) = L(M2)).

I Hence, G is a mapping reduction from ATM to EQTM .
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Mapping Reducibility

Theorem

EQTM is neither Turing recognizable nor co-Turing recognizable.

Proof.

I We have ATM ≤m EQTM and ATM ≤m EQTM (earlier slides).

I From this, ATM ≤m EQTM and ATM ≤m EQTM .

I Since ATM is not Turing recognizable, neither EQTM nor EQTM is.

I Since EQTM is not recognizable, then EQTM is not co-recognizable.

I This follows by definition of co-recognizability.

I What does this mean?

I We can’t reliably recognize when pairs of Turing machines have the same
language (EQTM is not Turing recognizable).

I Nor can we reliably recognize when pairs of Turing machines have
different languages (EQTM is not co-Turing recognizable).
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Mapping Reducibility

Show that EQCFG is co-Turing-recognizable.
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Mapping Reducibility

Show that EQCFG is co-Turing-recognizable.

Proof.

We can construct a TM M which recognizes the complement of EQCFG :
M = “On input 〈G ,H〉:

1. For each string x ∈ Σ∗ in lexicographic order:

2. Test whether x ∈ L(G ) and whether x ∈ L(H), using the algorithm
for ACFG .

3. If one of the tests accepts and the other rejects, accept; otherwise,
continue.”
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Mapping Reducibility

Show that EQCFG is undecidable.
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Mapping Reducibility

Show that EQCFG is undecidable.

Proof.

Suppose that EQCFG were decidable. We can construct a decider M for
ALLCFG = {〈G 〉|G is a CFG and L(G ) = Σ∗} as follows:
M = “On input 〈G 〉:

1. Construct a CFG H such that L(H) = Σ∗.

2. Run the decider for EQCFG on 〈G ,H〉.
3. If it accepts, accept. If it rejects, reject.”
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In-class Questions???

Let J = {w |w = 0x for some x ∈ ATM , or w = 1y for some y ∈ ATM}.
Show that neither J nor J is Turing recognizable.
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Questions for Group Discussion

1. A state in an automaton is useless if it is never entered on any input
string. Consider the language UPDA = {〈P〉|P is a PDA with useless
states}. Show that it is decidable. Hint: If given a PDA P with state q,
consider modifying P so that q is the only accept state of P.

2. Consider the problem of determining whether a Turing machine M on
input w ever attempts to move its tapehead left at any point while
processing w . Let L = {〈M,w〉|M attempts moves left at some point
when processing w}. Show that L is decidable.
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Questions for Group Discussion

A state in an automaton is useless if it is never entered on any input string. Consider the language
UPDA = {〈P〉|P is a PDA with useless states}. Show that it is decidable. Hint: If given a PDA P
with state q, consider modifying P so that q is the only accept state of P.

Proof.

ECFG is decidable and so has decider N. We create a decider M for UPDA.
M = “On input w :

I Scan w . Reject if it is not a valid representation of a PDA P.

I Identify the states q1, q2, . . . , qn of P, and for each qi do the following:

I Modify P so that qi is its only accept state (call the modified
PDA Pqi ).

I Convert Pqi to an equivalent CFG Gqi using techniques from
Chapter 2.

I Run N on 〈Gqi 〉.
I If N accepts, then accept w .
I If N rejects, then continue.

I If each qi has been processed without accepting, reject w .”
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Questions for Group Discussion

A state in an automaton is useless if it is never entered on any input string.
Consider the language UPDA = {〈P〉|P is a PDA with useless states}. Show
that it is decidable. Hint: If given a PDA P with state q, consider modifying P
so that q is the only accept state of P.

Proof.

N accepts 〈Gqi 〉 iff L(Gqi ) is empty. However, since L(Pqi ) = L(Gqi ), it
must be that qi is never entered (because qi ) is the only accept state of
Pqi . So if N accepts on some Pqi , then P has a useless state, and so
w = 〈P〉 should be accepted. Above, M rejects only if N rejects on every
〈Pqi 〉.
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Questions for Group Discussion

Let L = {〈M,w〉|M attempts moves left at some point when processing w}. Show
that L is decidable.

Proof.

We construct a decider R for L. It works as follows:
R = “On input x :

1. Scan x , checking whether it is of the form 〈M,w〉, where M is a TM and
w a string. If not, reject. Otherwise continue.

2. Run M on w for |w |+ |Q|+ 1 steps. If M ever moves left within that
number of steps, then accept. Otherwise reject.”
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Questions for Group Discussion

Let L = {〈M,w〉|M attempts moves left at some point when processing w}. Show
that L is decidable.

Proof.

The idea here is that if M does not move left within w steps, then it must have
moved right, moving passed input string w . At that point, it will read only
blank spaces. It can move from one state to another, reading blanks, but at
some point, it must return to a state it has previously been in (that point is
|w |+ |Q|+ 1 steps). And so, if it hasn’t moved left within |w |+ |Q|+ 1 steps,
the machine will simply repeat states (reading blanks forever). It will never
move left.
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