Note: some points of considers Assignment 3, 2022, part 1 are omitted, as 1. leg exp: (1(D+1))*(1+2) underlined: __ DFA : 0 2. L1 : 0, 1 0 U, 1 L'UT Po, P1. 20))-0, 1 P1. h

$$3. \xrightarrow{1}A1 \xrightarrow{0} (A, B) \xrightarrow{0} (A, B, C)$$

To show
$$L(G)$$
 not regular. we use pumping beams.
Suppose it is. Then \exists an integer P , s.t.
 $O^{P} \# O^{2P} \in L$
And $O^{P} \# O^{2P} = U \vee W$, s.t. $|UV| < P$. $|V| > 0$
and $UV^{T}W \in L$. then $UVVW$ cannot be $O^{a} \# O^{2d}$
This is a contradiction.

5. Design a context. free grammar:

6 To show L is not context-free. use the pumping lemma
for context-free grammare.
Suppose it is. Then I an integer P.s.t.
$$w = O^P | P^2 \in L$$

 $w = u \lor x y_3$, $|\lor xy| < P$. $|\lor y| > O$
s.t. $u \lor x y_3$, $|\lor xy| < P$. $|\lor y| > O$
s.t. $u \lor x y_3$, $|\lor xy| < P$. $|\lor y| > O$
s.t. $u \lor x y_3$, $|\lor xy| < P$. $|\lor y| > O$
s.t. $u \lor x y_3$ GL.
Case 1: $\lor x y$ is in O-segment or $|-segment$
then $u \lor x y_3$ is of the form $O^Q | P^2$, $Q > P$.
or $O^P | Q$, $Q > P^2$, so not in L.
Case 2: $\lor xy$ must stranddle O's and I's.
2.1: if \lor contains only O and y contains only I
Suppose $|\lor| = C$ and $|y| = D$.
Then $P^2 + D = (P+C)^2$.
(for $u \lor^2 x \lor^3 F \in L$)

This yields
$$D = 2CP + C^2$$
 (1)
And $P^2 - D = (P - C)^2$
This yields $D = -2CP + C^2$ (2)
(1) and (2) give $C = D = O$, a contradiction.
2.2. if V or Y contains both O and $1 \dots M$

1. See the clicles or the textbook :)

4. Let $(f = (LUR, E), E \subseteq L \times R$ be a bipartite graph. We construct a weighted directed graph $H = (V, E, w), V \in N$ that (f has a p.m. (=) H has a max flow value of VSketch: you will need to describe below properly

by setting V= is. 1) ULUR, etc

W: every edge has wt 1

5. (1) LEC-ARRANGE

$$= \left\{ (U, L_{1}, \dots, L_{n}, P_{1}, \dots, P_{m-n}) \right| L_{i}, P_{j} \subseteq U,$$

$$i = L \dots n$$
such that $\exists a_{i} \in L_{i}, \text{ letting } A = ia_{1}, \dots, a_{n}]. \forall j \in [m-n],$

$$A \cap P_{j} \neq \varphi$$

(2) In NP: guess $a_i \in L_i$ and verify $A \cap P_j \neq \phi$

(2) NP-hand: we reduce Set Cover to LEC-APRANGE Set Cover = ? (W, S1, ..., Sm, k) | Si SW, JTS[m] |T]=k, UieTSi=W)

We construct a LEC-ARRANGE instance as follows. $U = \{S_1, \dots, S_m\}$

 $L_1 = \cdots = L_k = U$

 $\forall w \in W, P_w = \{S_i \mid w \in S_i\}.$

Claim. (W, S1, ~, Sm. k) & Set Cover

 $(U, L_1, \dots, L_k, P_w : w \in W) \in LEC-ARR$ $Pf.(\Rightarrow) T \in [m]$ is a solution for set lover Let $T = \{i_1, \dots, i_k\}$

this is just Si; EPw That is, YweW, Eje[k], we Si; So we select Sij from Lj for j E[k]. we have SijEPw. This means that { Si, Sik) is a solution for LEC-ARR. ((=)

State the construction. correctness proof, and running time (poly-time) based on the above.