
Computational Complexity
Luke Mathieson

October 1, 2020

1 What can we decide?
Rice’s theorem demonstrates that many of the interesting questions we can ask about Turing Machines are
undecidable, and worse, undecidability is not limited to these questions, we can’t even tell if a PDA accepts
every string1. This may lead to the question “why bother with Turing Machines then?”. Everything interesting
that we could do so far has been possible with some weaker model of computation.

One practical outcome of examining Turing Machines results when we ask slightly more refined questions;
“what can we decide with a limited amount of resources?”. One central problem with Turing Machines is that
they have an infinite tape, thus it is difficult to decide whether they are looping infinitely, or just engaged in
some long computation.

The obvious first step is to limit the tape.

2 Linear Bounded Automata
A linear bounded automaton (LBA) is a Turing Machine with the additional restriction that only a contiguous
section of the tape whose length is linear in the size of the input is used2. LBAs recognise the context sensitive
languages, and their grammars allow rules of the form αXβ → αγβ where γ = (Σ ∪ V)∗.

As LBAs have a finite section of tape available, they are perhaps slightly closer to modern computers, but
more importantly, we can tell when they’re stuck in an infinite loop.

As an LBA can only use cn cells of the tape, where c is some constant and n is the number of symbols in
the input, it can only have a finite number of configurations, namely |Q| × cn × |Γ|cn; i.e. the combination of
the number of states the LBA can be in, times the number of spots the head can be at, times the number of
different strings that can be written on the tape. Thus if an LBA arrives at the same configuration twice, it
must be stuck in an infinite loop3 Thus the halting problem for LBAs (HALTLBA), along with the acceptance
problem (ALBA), is decidable.

Unfortunately, the empty language problem for LBAs (ELBA) and the universal acceptance problem for
LBAs (ALLLBA) remain undecidable. It seems that allowing TMs that may not halt is simply too difficult to
handle.

3 Moving Toward Things We Can Handle
The apparently inherent undecidability in asking questions about Turing Machines suggests that the things we
do day-to-day on computers are not normally questions about Turing Machines4. For most things we attempt
to do, we know that given enough time, we could solve them, by brute force if nothing else. Thus the problems
that we normally face are decidable problems, and the computational issues surround how efficiently we compute
them. To formalise these ideas, we, of course, need to define some concepts.

Definition 3.1 (Input Size). The size of the input to a Turing Machine is the number of symbols in the input.
Equivalently, the number of cells of the tape the input uses, or the length of input viewed as a string.

Typically we will denote the size of the input with the symbol n, unless otherwise specified.
For practical purposes however, we will often use proxies for the length of the input. That is, we may use

other aspects of the input as our measure. This requires some care however, an issue we will return to later.

Definition 3.2 (Computational Step). A computational step is a single transition of a Turing Machine.
1This is also essentially why we do not have an equivalent to the Myhill-Nerode Theorem for Context Free Languages.
2A computationally equivalent definition uses explict begin and end markers as boundaries.
3Note that non-determinism doesn’t help here – if there were a path to an accepting configuration from the repeated configuration,

a non-deterministic machine would have chosen that path the first time, as there’s no reason to repeat exactly the same configuration.
4Although some things we’d like to be able to do are – for example checking a piece of code for correctness.

1

41080 Theory of Computing Science Computational Complexity, Spring 2018

As with input size, it will often be acceptable to take any constant-time operation as a single step, once we
define what constant-time means.

3.1 Limiting Computation
With Definitions 3.1 and 3.2 we have enough to establish the basics of computational commplexity.

Definition 3.3 (Time Complexity of a Language). A language L has time complexity f(n) for some function
f if there exists a Turing Machine that, given an input x, with |x| = n, decides x ∈ L in a number of steps
bounded by f(n).

Definition 3.4 (Space Complexity of a Language). A language L has space complexity f(n) for some function
f if there exists a Turing Machine that, given an input x, with |x| = n, decides x ∈ L using at most f(n)
additional tape cells.

Note that we make no mention of determinism here. Also there is nothing unique about the Turing Machines
in these definitions in the sense that a language can be assigned many complexities. Normally of course we are
interested the lowest possible complexity.

3.2 Classes of Functions
Although each language has its own complexity, we would like a more robust classification of groups of languages.
In one sense, we want to be able to say “yes we can solve this problem” without requiring that we determine
the best possible complexity for the language, or that we specify the exact details of the computer we are using.

To do this, we need a more robust way of measuring complexity. To this end, we will use asymptotic notation
to create equivalence classes of functional bounds. This turns out to be quite useful as the rate of growth of a
function is much more important than the constant multipliers in determining complexity classifications. Then
we can group things bounded by some f(n) together in the class O(f(n)). For example, the class of languages
decided by LBAs can be expressed as O(n)-SPACE (also known as LINSPACE).

As a starting point for a definition of efficient computation, we will use the Cobham-Edmonds Thesis:

Conjecture 3.5 (Cobham-Edmonds Thesis). Languages can be efficiently computed on some computational
device only if they can be decided in O(nc) for time on a Turing Machine.

Or to put it another way, a language can be efficiently computed when it has polynomial time complexity.
This thesis certainly has limitations, but it provides a fairly robust initial basis.

This gives our first complexity class: P.

3.3 Polynomial Time
The class P (short for polynomial time) is defined as follows:

Definition 3.6 (Polynomial Time). A language L is in class P if there exists a constant c and a deterministic
Turing Machine that, given input x ∈ Σ∗ with |x| = n, decides x ∈ L in at most O(nc) steps.

P is the basic class of efficiently computable languages. Although phrased here in terms of languages, we
can substitute the idea of decision problems for an entirely equivalent definition:

Definition 3.7 (Decision Problem). A decision problem is a computational problem that consists of two
components:

1. the input, and
2. a yes/no question.

It is easy to see that this is the same as deciding language membership. What may be less obvious is that
it bears direct relationships to other forms of problems:

• Search Problems – where we ask for a solution, and
• Optimization Problems – where we are given an optimization criterion and measure and ask for a solution

with the best possible value.

Thus this class, although phrased in terms of decision problems, acts as a useful classification for the practical
version of problems where we actually want the solution. Many practically useful problems are in P:

• Searching
• Sorting

2

41080 Theory of Computing Science Computational Complexity, Spring 2018

• Shortest Paths in Graphs
• Minimum Spanning Trees
• Linear Programming
• Maximum Flow
• Primality Testing
• Every context free language
• Circuit Value Problem
• Horn-Satisfiability

Most day-to-day algorithms are combinations of these basic problems.

3.4 Nondeterministic Polynomial Time
The definition of P explicitly requires a deterministic Turing Machine. What happens when we allow a nonde-
terministic Turing Machine? This gives the class NP:

Definition 3.8 (Nondeterministic Polynomial Time). A language L is in class NP if there exists a constant c
and a nondeterministic Turing Machine that, given input x ∈ Σ∗ with |x| = n, decides x ∈ L in at most O(nc)
steps.

Interestingly, this turns out to be the same as the class of problems that a verifiable in deterministic poly-
nomial time:

Definition 3.9 (NP Verifier Definition). A language L is in class NP if there exists two constants c and d and
a deterministic Turing Machine that, given input x ∈ Σ∗ with |x| = n and a certificate y ∈ Σ∗ with |y| ∈ O(nd),
decides x ∈ L in at most O(nc) steps.

That is, given the input and a polynomial-length proof that the input is a yes instance, the deterministic
turing machine can decide the problem in polynomial time.

With several machine models so far, nondeterminism has added no extra power; any NFA can be turned
into a DFA, any NTM can be simulated by a DTM. Of course NPDAs are more powerful than DPDAs, and the
question remains open for LBAs. What happens with time-restricted TMs?

This is, of course, the most prominent open question in computer science: is P a strict subset of NP, or are
the they same? Or phrased another way, does nondeterminism save us time?

It should be clear that P ⊆ NP – we can simply not use any nondeterminism, thus every problem/language
in P is also in NP, but is there anything in NP that is not in P if they turn out to be different?

3.5 NP-completeness
One major class of problems apparently outside P is NP-complete. Informally, this is the hardest subset of
problems in NP.

To establish NP-completeness we need a way of relating problems to one another: reductions!

Definition 3.10 (Karp Reduction). A polynomial-time many-one reduction5, denoted ≤m
P , from language/prob-

lem A to language/problem B is a function f : A → B where given an input x, f is computable in time bounded
by |x|O(1) and x ∈ A ⇔ f(x) ∈ B.

Example 3.11. Consider the following two problems:

3-SAT
Instance: A set of boolean variables V ar, a set of disjunctive clauses Cl of size 3 over literals6 of
V ar.
Question: Is there an assignment α : V ar → {True,False} such that every c ∈ Cl evaluates to True?

Vertex Cover
Instance: A graph G = (V,E), an integer k.
Question: Is there a set V ′ ⊆ V with |V ′| ≤ k such that for every uv ∈ E either u ∈ V ′ or v ∈ V ′

(or both)?

We can show that 3-SAT ≤m
P Vertex Cover.

Given an instance (V ar, C)l of 3-SAT, we construct an instance (G, k) of Vertex Cover as follows:
5Or Karp Reduction, after Richard Karp.
6A literal of a boolean variable is the negated or unnegated instance that appears in a formula. e.g. the literals of variable v are

(confusingly) v and v̄.

3

41080 Theory of Computing Science Computational Complexity, Spring 2018

• for each v ∈ V ar, we construct a variable gadget where we add two vertices v and v̄ to V , and the edge
vv̄ to E,

• for each c ∈ Cl with literals l1, l2 and l3, we construct a clause gadget where we add three vertices l1c , l2c
and l3c to V , three edges l1c l

2
c , l1c l3c and l2c l

3
c to E and for each i, we add the edge licv to E, where v is the

corresponding literal from the variable gadget7, and
• set k = |V ar|+ 2 · |Cl|.

Lemma 3.12. If (V ar, Cl) is in 3-SAT, then (G, k) is in Vertex Cover.

Proof. As (V ar, Cl) is in 3-SAT, there is an assignment α : V ar → {True,False} such that each clause evaluates
to True. We select a vertex cover (the set V ′) as follows:

• if α(v) = True, add the vertex v from the variable gadget to V ′, otherwise add the vertex v̄ from the
variable gadget to V ′,

• for each clause, at least one literal evaluates to True, add the vertices corresponding to the other two
literals to the set V ′, if more than one literal evaluates to True, select one arbitrarily.

Claim 3.13. V ′ is a vertex cover for G.

To be a vertex cover, each edge in G must have at least one endpoint in V ′. The edge added by each variable
gadget is covered as we select one of the endpoints based on α. For each triangle added by a clause gadget,
all three edges are covered as we choose two of the three vertices. It only remains to examine the connections
between the variable and clause gadgets. As each clause has at least one true literal, the edge between that
literal vertex and its corresponding variable gadget vertex is covered by the variable gadget vertex. The two
other edges are covered by the remaining literal vertices in the clause gadget. Therefore all edges are covered,
and V ′ is a vertex cover.

It is also clear that |V ′| is |V ar|+ 2 · |Cl| by construction. Therefore (G, k) is in Vertex Cover.

Lemma 3.14. If (G, k) is in Vertex Cover, then (V ar, Cl) is in 3-SAT.

Proof. As (G, k) is in Vertex Cover, there is a set V ′ ⊆ V with |V ′| ≤ k = |V ar| + 2 · |Cl| that is a vertex
cover for G.

As V ′ is of size at most k, we must have exactly one vertex from each variable gadget in V ′ and two vertices
from each clause gadget in V ′. As there is one vertex not in V ′ in each clause gadget, the corresponding vertex
in the variable gadget must be in V ′. Thus we construct a satisfying assignment α for (V ar, Cl) by setting
a variable to True the variable gadget vertex corresponding to its unnegated literal is in V ′, and False if its
negated variable is in V ′. As each clause has at least one such variable, α satisfies each c ∈ C.

Lastly, we need to check that the reduction is computable in polynomial time.

Lemma 3.15. The reduction is computable in time bounded by O(|〈(V ar, Cl)〉|c).

Proof. For each variable, we add two vertices and an edge, each operation taking a constant number of steps.
For each clause we add three vertices and three edges, each taking a constant number of steps, and for each
vertex in the clause gadget, we must find the corresponding vertex in the variable gadget and add an edge.

Let |V ar| = n and |Cl| = m. As we can label each variable and clause in O(log(n + m)) bits, we can
construct variable labels using at most O(log((n +m)2)) = O(log(n +m)) bits as well. Thus the steps above
take at most O(nm log(n+m)) steps.

In a similar fashion to Turing reductions giving a way to solve one problem if you know how to solve
another, Karp reductions give a way to solve one problem in polynomial time if you know how to solve another
in polynomial time (and you can construct the reduction). If A ≤m

P B, and B ∈ P, then we can conclude that
A ∈ P as well, as we can convert from A to B in polynomial time, solve B in polynomial time, and hence get
an answer to A.

Like Turing reductions, this observation will actually be most useful demonstrating that the second problem
(probably) doesn’t have a polynomial time algorithm.

Definition 3.16 (NP-hard). A problem Π is NP-hard if, for every problem Ψ ∈ NP, there is a Karp reduction
Ψ ≤m

P Π.

That is, Π could be used to solve everything in NP in polynomial time, if we knew a polynomial time
algorithm for Π. Of course, finding a polynomial time algorithm for any NP-hard problem would immediately
resolve the question of P

?
= NP. Of course there are many problems that are NP-hard that obviously don’t

have polynomial time algorithms, so to say something a touch more interesting, we can refine this notion:
7e.g. if l = x̄, we add the edge between l in the clause gadget and the x̄ vertex in the variable gadget for x.

4

41080 Theory of Computing Science Computational Complexity, Spring 2018

Definition 3.17 (NP-complete). A problem Π is NP-complete if:

• Π ∈ NP, and
• Π is NP-hard.

Thus the class NP-complete is the set of problems/languages that are at least as hard as anything in NP,
at least up to some polynomial factor.

To make use of this, we need to establish that at least one problem is NP-complete (as it is unlikely that
something outside NP can be reduced to something in it). Fortunately, the Cook-Levin theorem gives us:

Theorem 3.18 (Cook-Levin Theorem). SAT is NP-complete.

Where SAT is like 3-SAT, but we have no bound on the size of the clauses. Luckily it is not hard to also
show that SAT ≤m

P 3-SAT, so 3-SAT is also NP-complete.
Given this, can show the following:

Theorem 3.19. Vertex Cover is NP-complete.

Proof. We have already shown that 3-SAT ≤m
P Vertex Cover, demonstrating that Vertex Cover is

NP-hard.
We need only show that Vertex Cover ∈ NP.
We give a nondeterministic guess-and-check algorithm for Vertex Cover:

1. Given a graph G and an integer k, guess k vertices from V to form the vertex cover V ′.
2. Check that these vertices do form a vertex cover.

If G does have a vertex cover of size at most k, the nondeterminism will guarantee that a suitable set of
k vertices is chosen. We can see that this is computable in polynomial time; for each edge in E , we need to
check that one of its two endpoints is in V ′, this takes time O((|E| · |V |) log |V |). The initial guessing takes time
O(|V | log |V |)

We can also use the verifier definition, where the proof string y essentially takes the place of the “guess”
component of the algorithm. Given a set of k vertices, we can verify that they are a vertex cover in polynomial
time using the above algorithm.

Thus Vertex Cover is in NP.

3.6 NP-complete Problems
Unfortunately, many of the interesting problems in the world turn out to be NP-complete (the formal versions
given in parentheses):

• Timetabling (Coloring)
• Scheduling in many forms (General Scheduling)
• Route finding (Travelling Salesman, Hamiltonian Path)
• Optimal Resource Allocation (Knapsack, Bin Packing, Partition)
• Detecting features in data mining (Feature Set)
• Place facilities (Dominating Set, Independent Set, Vertex Cover)
• Determining maximum consistent sets of observations (Vertex Cover)
• Virtually anything with constraints (SAT, Integer Linear Programming, Constraint Satisfac-

tion Problem)

The full list of known NP-complete problems numbers in the tens of thousands.
Of course we would still like to solve these problems, however NP-completeness gives us strong evidence that

they have no polynomial time algorithm8. Fortunately, NP-completeness not actually a complete death sentence
for solvability of a problem. Some problems (e.g. Knapsack) have pseudo-polynomial time algorithms9. Others,
like SAT, are often amenable to very clever, but still exponential time algorithms10.

8Sure someone clever would’ve found one by now...
9Once you start including numbers in your input, you get interesting results, as n-bits can store a number up to 2n, so the

meaning of the input is not as tightly linked to the length of the input.
10A good exponential can be better than a bad polynomial for reasonable input sizes.

5

