
CS 301
Lecture 18 – Decidable languages
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Decidable language
Recall, a language A is decidable if there is some TM M that

1 recognizes A (i.e., L(M) = A), and
2 halts on every input (i.e., ∀w ∈ Σ∗, M either accepts or rejects w)

Such a TM is called a decider
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Acceptance
The acceptance problem for a type of machine1 asks whether a given machine of the
specified type accepts a string

Examples:

ADFA = {⟨B, w⟩ ∣ B is a DFA that accepts the string w}
ANFA = {⟨B, w⟩ ∣ B is an NFA that accepts the string w}
AREX = {⟨R, w⟩ ∣ R is a regular expression that generates the string w}
APDA = {⟨B, w⟩ ∣ B is a PDA that accepts the string w}
ACFG = {⟨G, w⟩ ∣ G is a CFG that generates the string w}
ATM = {⟨B, w⟩ ∣ B is a TM that accepts the string w}

1For models of computation like regular expressions and grammars, the acceptance problems asks if
it generates the string, rather than accepts it
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Emptiness and equivalence
The emptiness problem asks whether the language of the machine is empty

Examples:

EDFA = {⟨B⟩ ∣ B is a DFA and L(B) = ∅}
ECFG = {⟨G⟩ ∣ G is a CFG and L(G) = ∅}
ETM = {⟨B⟩ ∣ B is a TM and L(B) = ∅}

The equivalence problem asks whether two machines have the same language

Examples:

EQDFA = {⟨A, B⟩ ∣ A and B are DFAs and L(A) = L(B)}
EQCFG = {⟨G, H⟩ ∣ G and H are CFGs and L(G) = L(H)}
EQTM = {⟨A, B⟩ ∣ A and B are TMs and L(A) = L(B)}
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ADFA is decidable

Theorem
The language

ADFA = {⟨B, w⟩ ∣ B is a DFA that accepts the string w}

is decidable.

Proof.
We want to build a TM M that decides ADFA:
M = “On input ⟨B, w⟩,

1 Run (or simulate) B on w

2 If B ends in an accept state, accept; otherwise reject”
Since the simulation always ends after ∣w∣ steps, M is a decider.
If w ∈ L(B), then M will accept. If w ∉ L(B), then M will reject.

Note that the form of the input to M matches exactly the form of the strings in the
language we want to decide
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Using a TM as a subroutine in another TM
Given a TM R, we can construct another TM M that uses R

The language A = {⟨B, w⟩ ∣ B is a DFA, w ∈ L(B), and w
R
∈ L(B)} is decidable

Let R be the decider for ADFA.
M = “On input ⟨B, w⟩,

1 Run R on w and if R rejects, reject
2 Run R on w

R and if R accepts, accept; otherwise reject”

How does this work?

The details aren’t important, but here’s one way we could incorporate R’s
implementation into M ’s:

1 Construct M
′ as a 2-TM that uses its second tape for the implementation of R

2 So M
′ first copies w to the second tape and then simulates R on it. If R doesn’t

reject, it copies w
R to the second tape and simulates R a second time

3 Construct the basic TM M by the procedure that lets us simulate a k-TM on a
basic TM

6 / 26



Using a TM as a subroutine in another TM
Given a TM R, we can construct another TM M that uses R

The language A = {⟨B, w⟩ ∣ B is a DFA, w ∈ L(B), and w
R
∈ L(B)} is decidable

Let R be the decider for ADFA.
M = “On input ⟨B, w⟩,

1 Run R on w and if R rejects, reject
2 Run R on w

R and if R accepts, accept; otherwise reject”

How does this work?
The details aren’t important, but here’s one way we could incorporate R’s
implementation into M ’s:

1 Construct M
′ as a 2-TM that uses its second tape for the implementation of R

2 So M
′ first copies w to the second tape and then simulates R on it. If R doesn’t

reject, it copies w
R to the second tape and simulates R a second time

3 Construct the basic TM M by the procedure that lets us simulate a k-TM on a
basic TM

6 / 26



Using a TM as a subroutine in another TM
Given a TM R, we can construct another TM M that uses R

The language A = {⟨B, w⟩ ∣ B is a DFA, w ∈ L(B), and w
R
∈ L(B)} is decidable

Let R be the decider for ADFA.
M = “On input ⟨B, w⟩,

1 Run R on w and if R rejects, reject
2 Run R on w

R and if R accepts, accept; otherwise reject”

How does this work?
The details aren’t important, but here’s one way we could incorporate R’s
implementation into M ’s:

1 Construct M
′ as a 2-TM that uses its second tape for the implementation of R

2 So M
′ first copies w to the second tape and then simulates R on it. If R doesn’t

reject, it copies w
R to the second tape and simulates R a second time

3 Construct the basic TM M by the procedure that lets us simulate a k-TM on a
basic TM

6 / 26



Using a TM as a subroutine in another TM
Given a TM R, we can construct another TM M that uses R

The language A = {⟨B, w⟩ ∣ B is a DFA, w ∈ L(B), and w
R
∈ L(B)} is decidable

Let R be the decider for ADFA.
M = “On input ⟨B, w⟩,

1 Run R on w and if R rejects, reject
2 Run R on w

R and if R accepts, accept; otherwise reject”

How does this work?
The details aren’t important, but here’s one way we could incorporate R’s
implementation into M ’s:

1 Construct M
′ as a 2-TM that uses its second tape for the implementation of R

2 So M
′ first copies w to the second tape and then simulates R on it. If R doesn’t

reject, it copies w
R to the second tape and simulates R a second time

3 Construct the basic TM M by the procedure that lets us simulate a k-TM on a
basic TM

6 / 26



TM subroutines
We’re going to be doing this a lot so there are some important things to watch out for

• If R isn’t a decider, then the simulation of R on some input may not halt; if it
doesn’t the machine we’re building won’t either!

• We can’t say, “Run R on some input and if it loops, do something” because we
don’t know how to tell if a TM is looping
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ANFA is decidable

Theorem
The language

ANFA = {⟨B, w⟩ ∣ B is an NFA that accepts the string w}

is decidable.

Proof.
We want to build a TM M that decides ANFA. Let R be the TM that decides ADFA
and build
M = “On input ⟨B, w⟩,

1 Convert the NFA B to an equivalent DFA C using the power set construction
2 Run R on ⟨C, w⟩. If R accepts, accept; otherwise reject”

Since R is a decider, the simulation in step 2 will always halt so M is a decider.

If w ∈ L(B), then w ∈ L(C) so R will accept ⟨C, w⟩ and thus M accepts. If
w ∉ L(B), then w ∉ L(C) so both R and M will reject.
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AREX is decidable

Theorem
The language

AREX = {⟨R, w⟩ ∣ R is a regular expression that generates the string w}

is decidable.

Proof.
We want to build a TM M that decides AREX. Let R be the TM that decides ANFA
and build
M = “On input ⟨R, w⟩,

1 Convert the regular expression R to an equivalent NFA N using the standard
construction

2 Run R on ⟨N, w⟩. If R accepts, accept; otherwise reject”
Since R is a decider, the simulation in step 2 will always halt so M is a decider.

If w ∈ L(R), then w ∈ L(N) so R will accept ⟨N, w⟩ and thus M accepts. If
w ∉ L(R), then w ∉ L(N) so both R and M will reject.
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DFAs, NFAs, and regular expressions are equivalent
For the purposes of constructing TMs, it doesn’t matter if the input is a DFA, NFA, or
regular expression

The TM can always convert from one to another using the procedures we’ve been
learning about all semester

10 / 26



Emptiness problem
Consider the DFAs

q0 q1

a

b

a,b

M1:

q0 q1

a

b

a,b

M2:

q0 q1

a,b a,b
M3:

Is L(M1) = ∅?

Yes

Is L(M2) = ∅? No

Is L(M3) = ∅? Yes

What are the necessary and sufficient conditions for a DFA to recognize the empty
language? There must be no path from the initial state to an accepting state
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Algorithm to check if the language of a DFA is empty
We can use a graph algorithm to determine which states are reachable from the initial
state

Start by marking the initial state in some way, then iteratively mark all of the
neighbors of all marked states until no new states are marked

If an accepting state is marked, the language is not empty, otherwise it is empty

q0 q1

a

b

a,b
q0 q1

a

b

a,b
q0 q1

a,b a,b
M1: M2: M3:
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EDFA is decidable

Theorem
The language EDFA = {⟨B⟩ ∣ B is a DFA and L(B) = ∅} is decidable

Proof.
Let’s build a TM M to decide EDFA:
M = “On input ⟨B⟩,

1 Mark the initial state of B

2 Repeat until no new states are marked
3 Mark any state that has an incoming transition from a marked state
4 If any accept state is marked, reject; otherwise accept”

If L(B) ≠ ∅, then there must be a path from the initial state to an accept state so M
will reject. If L(B) = ∅, then no such path exists and M will accept

M is a decider because step 2 can happen at most ∣Q∣ − 1 times before no new states
are marked
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Emptiness problems for NFAs and regular expression
How would we show that the analogous emptiness problems for NFAs and regular
expressions are decidable?

Let R be a decider for EDFA and then build a TM that first converts the NFA or
regular expression to a DFA and then runs R on it
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Equivalence of DFAs
The equivalence problem for DFAs asks if two DFAs recognize the same language

Using a decider for EDFA, we could check if both languages are empty, but that
doesn’t really help

We also have a decider to check if a string is in a language
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An idea that doesn’t work
Let’s try to build a decider for
EQDFA = {⟨A, B⟩ ∣ A and B are DFAs and L(A) = L(B)}

Let R be a decider for ADFA and build
M = “On input ⟨A, B⟩,

1 Repeat for each string w ∈ Σ∗

2 Run R on ⟨A, w⟩
3 Run R on ⟨B, w⟩
4 If one of A or B accepts w and the other rejects, reject
5 Otherwise, A and B agree on all strings so accept”

If there is a string w that is accepted by A but rejected by B or vice versa, M will
eventually reject in step 4. Otherwise L(A) = L(B) so M will accept in step 5

Why doesn’t this idea work?
There are infinitely many strings in Σ∗ so the loop on line 1 will never end if
L(A) = L(B)
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A better idea
Given two languages X and Y , consider the language D = (X ∖ Y ) ∪ (Y ∖X)

Three cases:
1 If there is a string x which is in X but not in Y , then X ∖ Y ≠ ∅ so D ≠ ∅

2 If there is a string w which is in Y but not in X, then Y ∖X ≠ ∅ so D ≠ ∅

3 If X = Y , then X ∖ Y and Y ∖X are both ∅ so D = ∅

If X and Y are regular languages, then D is regular because X ∖ Y = X ∩ Y and
regular languages are closed under union, intersection, and complement

17 / 26



A better idea
Given two languages X and Y , consider the language D = (X ∖ Y ) ∪ (Y ∖X)

Three cases:
1 If there is a string x which is in X but not in Y , then X ∖ Y ≠ ∅ so D ≠ ∅

2 If there is a string w which is in Y but not in X, then Y ∖X ≠ ∅ so D ≠ ∅

3 If X = Y , then X ∖ Y and Y ∖X are both ∅ so D = ∅

If X and Y are regular languages, then D is regular because X ∖ Y = X ∩ Y and
regular languages are closed under union, intersection, and complement

17 / 26



A better idea
Given two languages X and Y , consider the language D = (X ∖ Y ) ∪ (Y ∖X)

Three cases:
1 If there is a string x which is in X but not in Y , then X ∖ Y ≠ ∅ so D ≠ ∅

2 If there is a string w which is in Y but not in X, then Y ∖X ≠ ∅ so D ≠ ∅

3 If X = Y , then X ∖ Y and Y ∖X are both ∅ so D = ∅

If X and Y are regular languages, then D is regular because X ∖ Y = X ∩ Y and
regular languages are closed under union, intersection, and complement
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EQDFA is decidable

Theorem
The language EQDFA = {⟨A, B⟩ ∣ A and B are DFAs and L(A) = L(B)} is decidable

Proof.
Let R be a decider for EDFA and build
M = “On input ⟨A, B⟩,

1 Construct DFA C where L(C) = (L(A) ∖ L(B)) ∪ (L(B) ∖ L(A))
2 Run R on ⟨C⟩
3 If R accepts, accept; otherwise reject”

The construction in step 1 can be carried out using the constructions we’ve seen earlier
in the semester
M is a decider because R is a decider
L(C) = ∅ iff L(A) = L(B) so M accepts iff L(A) = L(B)
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Recapitulation
The acceptance, emptiness, and equivalence problems for DFAs/NFAs/regular
expressions are all decidable

For some of these, we used deciders for other languages as subroutines
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Analogous problems for context-free languages
We can consider the acceptance, emptiness, and equivalence problems for context-free
languages

Like the situation with DFAs, NFAs, and regular expressions, we can easily convert
between CFGs and PDAs, so it suffices to consider CFGs
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ACFG is decidable

Theorem
The language ACFG = {⟨G, w⟩ ∣ G is a CFG and G generates w} is decidable.

This is trickier than DFAs, but we can use Chomsky normal form (CNF)

If w ∈ L(G) and G is in CNF, how many steps does it take for G to derive w?
If w = ε, it takes 1 step
If w ≠ ε, it takes 2∣w∣ − 1 steps

Let’s use this fact along with our procedure to convert a CFG to CNF
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Proof

Proof.
Build M = “On input ⟨G, w⟩,

1 Convert G to CNF
2 If w = ε, then if S → ε is a rule in G, accept; otherwise reject
3 Otherwise, list all derivations of length 2∣w∣ − 1
4 If any of these derivations is w, accept; otherwise reject”

This is a decider because there are finitely many derivations of length 2∣w∣ − 1.
If w ∈ L(G), then M will accept, otherwise M will reject.
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Emptiness problem for CFGs
Given a CFG, we want to figure out if the CFG can derive any string of terminals

Let’s figure out which variables in G can derive strings of terminals and then we can
look the start variable to see if it’s one that can
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ECFG is decidable

Theorem
The language ECFG = {⟨G⟩ ∣ G is a CFG and L(G) = ∅} is decidable.

Proof.
M = “On input ⟨G⟩,

1 Mark all terminal symbols in the rules of G

2 Repeat until no new variables get marked
3 Mark any variable A in G where A → u1u2⋯uk is a rule and each ui is marked
4 If the start variable is marked, reject; otherwise accept”

M is a decider because the loop can happen only finitely many times
If the start variable is marked, then it can derive a string of terminals so L(G) ≠ ∅
and M rejects
If the start variable is not marked, then it cannot derive any string of terminals so
L(G) = ∅ and M accepts
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What about equivalence of CFGs?

Theorem
The language A = {⟨G, H⟩ ∣ G and H are CFGs and L(G) ≠ L(H)} is
Turing-recognizable (RE)

Proof.
Let R be a decider for ACFG and build M = “On input ⟨G, H⟩,

1 For each w ∈ Σ∗,
2 Run R on ⟨G, w⟩
3 Run R on ⟨H, w⟩
4 If w was generated by only one of G or H, accept

If L(G) ≠ L(H), then M will accept at some iteration of the loop
If L(G) = L(H), then M will run forever

25 / 26



What about equivalence of CFGs?

Theorem
The language A = {⟨G, H⟩ ∣ G and H are CFGs and L(G) ≠ L(H)} is
Turing-recognizable (RE)

Proof.
Let R be a decider for ACFG and build M = “On input ⟨G, H⟩,

1 For each w ∈ Σ∗,
2 Run R on ⟨G, w⟩
3 Run R on ⟨H, w⟩
4 If w was generated by only one of G or H, accept

If L(G) ≠ L(H), then M will accept at some iteration of the loop
If L(G) = L(H), then M will run forever

25 / 26



Co-Turing-recognizable (coRE)
The language A is clearly related to the complement of EQCFG

EQCFG = A ∪ {w ∣ w is not a valid representation of ⟨G, H⟩ for CFGs G and H}

We say that a language is co-Turing-recognizable (coRE) if its complement is
Turing-recognizable (RE)

The language EQCFG is coRE

We’ll see later that EQCFG is not RE and thus not decidable (think about what that
means for grading homework problems about CFGs)
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