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initially points to the first symbol 
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the symbol 
immediately under 

the tape head.
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Each transition has the form
 

read → write, dir
 

and means “if symbol read is under the tape head, replace it with write and 
move the tape head in direction dir (L or R). The  symbol denotes a blank cell.☐
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move the tape head in direction dir (L or R). The  symbol denotes a blank cell.☐
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rejecting state. When a TM 

enters a rejecting state, it 
immediately stops running 
and rejects whatever the 

original input string was (in 
this case, aaaaa).
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this case, aaaaa).
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If the TM is started on the 
empty string ε, the entire tape 
is blank and the tape head is 
positioned at some arbitrary 

location on the tape.
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Input and Tape Alphabets

● A Turing machine has two alphabets:

– An input alphabet Σ. All input strings are written 
in the input alphabet.

– A tape alphabet Γ, where Σ ⊆ Γ. The tape alphabet 
contains all symbols that can be written onto the 
tape.

● The tape alphabet Γ can contain any number of 
symbols, but always contains at least one blank 
symbol, denoted . You are guaranteed  ∉ Σ.☐ ☐

● At startup, the Turing machine begins with an 
infinite tape of  symbols with the input written at ☐
some location. The tape head is positioned at the 
start of the input.
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New Stuff!



  

Main Question for Today:
Just how powerful are Turing machines?



  

Another TM Design

● Last time, we designed a TM for this 
language over Σ = {0, 1}:

L = { w ∈ Σ* | w has the same number
        of 0s and 1s }

● Let's do a quick review of how it 
worked.



  

A Different Idea
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A Different Strategy

Last time, we built a machine that checks 
whether a string has the form 0n1n.

 

That machine almost solves this problem, 
but requires that the characters have to be 

in order.
 

What if we sorted the input?
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A Different Strategy

Observation 1: A string 
of 0s and 1s is sorted 
if it matches the regex 

0*1*.

Observation 1: A string 
of 0s and 1s is sorted 
if it matches the regex 

0*1*.
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A Different Strategy

Observation 2: A string 
of 0s and 1s is not 

sorted if it contains 10 
as a substring.

Observation 2: A string 
of 0s and 1s is not 

sorted if it contains 10 
as a substring.



  

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a 
copy of 10 and replace 

it with 01.

Idea: Repeatedly find a 
copy of 10 and replace 

it with 01.



  

Let's Build It!
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TM Subroutines

● A TM subroutine is a Turing machine 
that, instead of accepting or rejecting an 
input, does some sort of processing job.

● TM subroutines let us compose larger TMs 
out of smaller TMs, just as you'd write a 
larger program using lots of smaller helper 
functions.

● Here, we saw a TM subroutine that sorts a 
sequence of 0s and 1s into ascending order.



  

TM Subroutines

● Typically, when a subroutine is done 
running, you have it enter a state 
marked “done” with a dashed line 
around it.

● When we're composing multiple 
subroutines together – which we'll do in 
a bit – the idea is that we'll snap in some 
real state for the “done” state.



  

What other subroutines can we make?



  

TM Arithmetic

● Let's design a TM that, given a tape that 
looks like this:

 

ends up having the tape look like this:

 
● In other words, we want to build a TM 

that can add two numbers.

… 1 3 7 4 2 …

… 1 7 9 0 0 …



  

TM Arithmetic

● There are many ways we could in principle 
design this TM.

● We're going to take the following approach:
– First, we'll build a TM that increments a number.
– Next, we'll build a TM that decrements a number.
– Then, we'll combine them together, repeatedly 

decrementing the second number and adding one 
to the first number.



  

Incrementing Numbers

● Let's begin by building a TM that increments a 
number.

● We'll assume that
– the tape head points at the start of a number,
– there is are at least two blanks to the left of the number, 

and
– that there's at least one blank at the start of the number.

● The tape head will end at the start of the number 
after incrementing it.

… 9 9 8



  

Incrementing Numbers

  go to the end of the number;
  while (the current digit is 9) {
      set the current digit to 0;
      back up one digit;
  }
  increment the current digit;
  go to the start of the number; 

  go to the end of the number;
  while (the current digit is 9) {
      set the current digit to 0;
      back up one digit;
  }
  increment the current digit;
  go to the start of the number; 
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Decrementing Numbers

● Now, let's build a TM that decrements a number.
● We'll assume that

– the tape head points at the start of a number,
– there is at least one blank on each side of the number.

● The tape head will end at the start of the number after 
decrementing it.

● If the number is 0, then the subroutine should 
somehow signal this rather than making the number 
negative.

1 0 2
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TM Subroutines

● Sometimes, a subroutine needs to report 
back some information about what 
happened.

● Just as a function can return multiple 
different values, we'll allow subroutines to 
have different “done” states.

● Each state can then be wired to a different 
state, so a TM using the subroutine can 
control what happens next.



  

Putting it All Together

● Our goal is to build a TM that, given two 
numbers, adds those numbers together.

● Before:

 

● After:

1 3 7 4 2 ……

1 7 9 0 0 ……
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start  
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 → ◻ ◻, R
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             → ◻ ◻, L                                
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                       ...
                       9 → 9, L

 → ◻ ◻, R

done            

n = 0



  

Using Subroutines

● Once you've built a subroutine, you can wire 
it into another TM with something that, 
schematically, looks like this:

● Intuitively, this corresponds to transitioning 
to the start state of the subroutine, then 
replacing the “done” state of the subroutine 
with the state at the end of the transition.

subX → Y, D done



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Six was due at the start of 
class today using late days. Solutions are 
now available.
● As always, we strongly recommend reading 

over the solution set – there’s a lot of good 
advice in there!

● Problem Set Seven is due on Friday at 
the start of class.



  

Midterm Exam Logistics

● The second midterm exam is tomorrow, Tuesday, May 23rd, 
from 7:00PM – 10:00PM. Locations are divvied up by last 
(family) name:
● Abb – Pag: Go to Hewlett 200.
● Par – Tak: Go to Sapp 114.
● Tan – Val: Go to Hewlett 101.
● Var – Yim: Go to Hewlett 102.
● You – Zuc: Go to Hewlett 103.

● You’re responsible for Lectures 00 – 13 and topics covered 
in PS1 – PS5. Later lectures and problem sets won’t be 
tested. The focus is on PS3 – PS5 and Lectures 06 – 13.

● The exam is closed-book, closed-computer, and limited-note. 
You can bring a double-sided, 8.5” × 11” sheet of notes with 
you to the exam, decorated however you’d like.



  

This is the part where I say
nice things about you!



  

Your Questions



  

“Tech evolves really fast. What can I do to 
stay relevant in tech throughout my career 
ie not get replaced by young college grads 

in 10 years?”

In any skilled job – whether it’s tech, medicine, law, etc. – 
you’ll always be learning new techniques and staying on top 
of the latest developments. It’s either institutionalized 
(e.g. law, medicine) or something that you’ll pick up on 

the job (e.g. tech).
 

There’s a lot of way to have fun while doing this. Attend 
conferences on topics you’re interested in. Join a paper-
reading group. Volunteer to work on projects in languages 
and frameworks you don’t understand. Read blogs. Go on 
Stack Overflow. Or do some combination of these things!

In any skilled job – whether it’s tech, medicine, law, etc. – 
you’ll always be learning new techniques and staying on top 
of the latest developments. It’s either institutionalized 
(e.g. law, medicine) or something that you’ll pick up on 

the job (e.g. tech).
 

There’s a lot of way to have fun while doing this. Attend 
conferences on topics you’re interested in. Join a paper-
reading group. Volunteer to work on projects in languages 
and frameworks you don’t understand. Read blogs. Go on 
Stack Overflow. Or do some combination of these things!



  

“In your impression, how does Stanford's 
CS department feel about Silicon Valley 

and its controversies? I'm assuming they're 
mostly very pro-SV; is that right?”

There are very close ties between Silicon Valley and the entire School 
of Engineering – it’s one of the reasons why the tech industry is so 

strong here and why the research program is so popular.
 

In my conversations with the faculty members here, I’ve found that 
people are generally pretty reasonable and don’t blindly think that the 
tech industry is somehow perfect or that it can’t do any wrong. It’s 

typically more nuanced – most people generally like the idea of having a 
healthy tech sector, many folks wish that the focus was less on 

consumer tech, lots are upset about lack of diversity and toxic culture, 
etc. That happens alongside many of them working for tech companies 

or getting research funds from them.

There are very close ties between Silicon Valley and the entire School 
of Engineering – it’s one of the reasons why the tech industry is so 

strong here and why the research program is so popular.
 

In my conversations with the faculty members here, I’ve found that 
people are generally pretty reasonable and don’t blindly think that the 
tech industry is somehow perfect or that it can’t do any wrong. It’s 

typically more nuanced – most people generally like the idea of having a 
healthy tech sector, many folks wish that the focus was less on 

consumer tech, lots are upset about lack of diversity and toxic culture, 
etc. That happens alongside many of them working for tech companies 

or getting research funds from them.



  

“Beyond finite automata, and how discrete 
math applies to CS, what do you consider 

to be the relevance of proofs and 
mathematical reasoning in the real world?”
The discrete structures portion of this course is extremely valuable for thinking 

about how to model complex structures in the real world. Jure Leskovec’s 
research program largely involves trying to model human behavior from a graph-
theoretic perspective and using that to design interventions or otherwise predict 

user behavior. Strict orders come up all the time in searching and sorting 
algorithms, and equivalence relations are used in modeling hash tables.

 

Where we’re going with computability theory – the limits of computation – is 
exceptionally valuable for understanding where you need to back up and search 
for alternate solutions. As you’ll see, a lot of problems we’d love to be able to 
solve in practice are provably impossible, and when that happens it indicates that 

you need to switch directions or otherwise relax your constraints.
 

The sort of theory from CS109 and CS161 powers modern machine learning 
techniques and is responsible for things like cell phones (FFT), Google Maps 

(search algorithms) and the Internet (spanning trees). I’ll talk more about this 
on our last day of class.

The discrete structures portion of this course is extremely valuable for thinking 
about how to model complex structures in the real world. Jure Leskovec’s 

research program largely involves trying to model human behavior from a graph-
theoretic perspective and using that to design interventions or otherwise predict 

user behavior. Strict orders come up all the time in searching and sorting 
algorithms, and equivalence relations are used in modeling hash tables.

 

Where we’re going with computability theory – the limits of computation – is 
exceptionally valuable for understanding where you need to back up and search 
for alternate solutions. As you’ll see, a lot of problems we’d love to be able to 
solve in practice are provably impossible, and when that happens it indicates that 

you need to switch directions or otherwise relax your constraints.
 

The sort of theory from CS109 and CS161 powers modern machine learning 
techniques and is responsible for things like cell phones (FFT), Google Maps 

(search algorithms) and the Internet (spanning trees). I’ll talk more about this 
on our last day of class.



  

Back to CS103!



  

Main Question for Today:
Just how powerful are Turing machines?



  

How Powerful are TMs?

● Regular languages, intuitively, are as 
powerful as computers with finite 
memory.

● TMs by themselves seem like they can do 
a fair number of tasks, but it's unclear 
specifically what they can do.

● Let's explore their expressive power.



  

Real and “Ideal” Computers

● A real computer has memory limitations: you 
have a finite amount of RAM, a finite amount of 
disk space, etc.

● However, as computers get more and more 
powerful, the amount of memory available keeps 
increasing.

● An idealized computer is like a regular 
computer, but with unlimited RAM and disk 
space. It functions just like a regular computer, 
but never runs out of memory.



  

Claim 1: Idealized computers can simulate 
Turing machines.

“Anything that can be done with a TM
can also be done with an unbounded-

memory computer.”



  

Clear a
1q₂

Go to
end

Check
for 0 q₁q₀

Go to
startq₃

start

0 → , R☐                       0 → 0, R
                       1 → 1, R

                     → ☐ ☐, L

1 → , L☐0 → 0, L                       
1 → 1, L                       

                     → ☐ ☐, R

q
acc
q

a

 → ☐ ☐, R                     

q
acc
q

r

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q₀

q₁

q₂

q₃

0
q₁ ◻ R

1
q
r ◻ R

◻
q
a ◻ R

q₁ 0 R q₁ 1 R q₂ ◻ L
q
r 0 R q₃ ◻ L q

r ◻ R

q₃ 0 L q₃ 1 L q₀ ◻ R

The TM's finite-state control 
can be encoded as a table, 

making it easy for a 
computer to look up 

transitions information.

The TM's finite-state control 
can be encoded as a table, 

making it easy for a 
computer to look up 

transitions information.



  

Simulating a TM

● To simulate a TM, the computer would need to be able to 
keep track of
● the finite-state control,
● the current state,
● the position of the tape head, and
● the tape contents.

● The tape contents are infinite, but that's because there 
are infinitely many blanks on both sides.

● We only need to store the “interesting” part of the tape 
(the parts that have been read from or written to so far.)

1 7 9 0 0



  

Claim 2: Turing machines can simulate 
idealized computers.

“Anything that can be done with an 
unbounded-memory computer can be done 

with a TM.”



  

What We've Seen

● TMs can
● implement loops (basically, every TM we've seen).
● make function calls (subroutines).
● keep track of natural numbers (written in unary or 

in decimal on the tape).
● perform elementary arithmetic (equality testing, 

multiplication, addition, increment, decrement, 
etc.).

● perform if/else tests (different transitions based on 
different cases).



  

What Else Can TMs Do?

● Maintain variables.
● Have a dedicated part of the tape where the 

variables are stored.
● We've seen this before: take a look at our machine 

for composite numbers, or for increment/decrement.
● Maintain arrays and linked structures.

● Divide the tape into different regions corresponding 
to memory locations.

● Represent arrays and linked structures by keeping 
track of the ID of one of those regions.



  

A CS107 Perspective

● Internally, computers execute by using basic 
operations like
● simple arithmetic,
● memory reads and writes,
● branches and jumps,
● register operations,
● etc.

● Each of these are simple enough that they 
could be simulated by a Turing machine.



  

A Leap of Faith

● It may require a leap of faith, but anything you 
can do a computer (excluding randomness and 
user input) can be performed by a Turing 
machine.

● The resulting TM might be colossal, or really 
slow, or both, but it would still faithfully 
simulate the computer.

● We're going to take this as an article of faith in 
CS103. If you curious for more details, come 
talk to me after class.



  

Just how powerful are Turing machines?



  

Effective Computation

● An effective method of computation is a form 
of computation with the following properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step leads 

to the next.
● Any computation that yields an answer does so in 

finitely many steps.
● Any computation that yields an answer always yields 

the correct answer.
● This is not a formal definition. Rather, it's a set 

of properties we expect out of a computational 
system.



  

The Church-Turing Thesis claims that

every effective method of computation is either 
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams
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TMs ≈ Computers

● Because Turing machines have the same 
computational powers as regular computers, we 
can (essentially) reason about Turing machines 
by reasoning about actual computer programs.

● Going forward, we're going to switch back and 
forth between TMs and computer programs 
based on whatever is most appropriate.

● In fact, our eventual proofs about the existence 
of impossible problems will involve a good 
amount of pseudocode. Stay tuned for details!


