

Turing Machines
Part Two

Recap from Last Time

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

a → , R☐

a → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

This is the Turing machine’s
finite state control. It issues

commands that drive the
operation of the machine.

This is the Turing machine’s
finite state control. It issues

commands that drive the
operation of the machine.

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

a → , R☐

a → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

This is the TM’s infinite tape.
Each tape cell holds a tape

symbol. Initially, all (infinitely
many) tape symbols are blank.

This is the TM’s infinite tape.
Each tape cell holds a tape

symbol. Initially, all (infinitely
many) tape symbols are blank.

… …

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

a → , R☐

a → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

The machine is started with the
input string written somewhere

on the tape. The tape head
initially points to the first symbol

of the input string.

The machine is started with the
input string written somewhere

on the tape. The tape head
initially points to the first symbol

of the input string.

a a a a… …

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

a → , R☐

a → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

a a a a… …

q
0

Like DFAs and
NFAs, TMs begin
execution in their

start state.

Like DFAs and
NFAs, TMs begin
execution in their

start state.

a a a… …

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

a → , R☐

a → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

a

q
0

At each step, the
TM only looks at

the symbol
immediately under

the tape head.

At each step, the
TM only looks at

the symbol
immediately under

the tape head.

a a a… …

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

a → , R☐
 → ☐ ☐, R

q
acc

q
rej

a

a → , R☐
 → ☐ ☐, R

q
0

These two transitions
originate at the current

state. We’re going to
choose one of them to

follow.

These two transitions
originate at the current

state. We’re going to
choose one of them to

follow.

a a a… …

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

a → , R☐
 → ☐ ☐, R

q
acc

q
rej

a

a → , R☐
 → ☐ ☐, R

q
0

Each transition has the form

read → write, dir

and means “if symbol read is under the tape head, replace it with write and
move the tape head in direction dir (L or R). The symbol denotes a blank cell.☐

Each transition has the form

read → write, dir

and means “if symbol read is under the tape head, replace it with write and
move the tape head in direction dir (L or R). The symbol denotes a blank cell.☐

 → ☐ ☐, R

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

q
acc

q
rej

a → , R☐

 → ☐ ☐, R
a → , R☐

Unlike a DFA or NFA, a TM
doesn’t stop after reading all
the input characters. We keep

running until the machine
explicitly says to stop.

Unlike a DFA or NFA, a TM
doesn’t stop after reading all
the input characters. We keep

running until the machine
explicitly says to stop.

 → ☐ ☐, R

Our First Turing Machine

q
0

q
acc

q
rej

q
1

start

q
acc

q
rej

a → , R☐

 → ☐ ☐, R
a → , R☐

This special state is an
accepting state. When a TM
enters an accepting state, it
immediately stops running
and accepts whatever the

original input string was (in
this case, aaaa).

This special state is an
accepting state. When a TM
enters an accepting state, it
immediately stops running
and accepts whatever the

original input string was (in
this case, aaaa).

 → ☐ ☐, R

Our First Turing Machine

q
0

q
rej

q
1

start

q
rej

a → , R☐

 → ☐ ☐, R
a → , R☐

q
acc

This special state is a
rejecting state. When a TM

enters a rejecting state, it
immediately stops running
and rejects whatever the

original input string was (in
this case, aaaaa).

This special state is a
rejecting state. When a TM

enters a rejecting state, it
immediately stops running
and rejects whatever the

original input string was (in
this case, aaaaa).

… …

 → ☐ ☐, R

Our First Turing Machine

q
0

q
1

start

a → , R☐

 → ☐ ☐, R
a → , R☐

q
acc

q
rej

If the TM is started on the
empty string ε, the entire tape
is blank and the tape head is
positioned at some arbitrary

location on the tape.

If the TM is started on the
empty string ε, the entire tape
is blank and the tape head is
positioned at some arbitrary

location on the tape.

Input and Tape Alphabets

● A Turing machine has two alphabets:

– An input alphabet Σ. All input strings are written
in the input alphabet.

– A tape alphabet Γ, where Σ ⊆ Γ. The tape alphabet
contains all symbols that can be written onto the
tape.

● The tape alphabet Γ can contain any number of
symbols, but always contains at least one blank
symbol, denoted . You are guaranteed ∉ Σ.☐ ☐

● At startup, the Turing machine begins with an
infinite tape of symbols with the input written at ☐
some location. The tape head is positioned at the
start of the input.

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start
0 → , R☐ 0 → 0, R

 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

Check
m≟0

Check
m≟0

Unmark

Next
0

Unmark

Next
0

Back
home
Back
home

Cross
off 1

To End

Cross
off 1

To End

Back
home
Back
home

 → ◻ ◻, R

0 → 0, R 1 → 1, L

0 → 0, L

 → ☐ ☐, R 0 → ×, R

× → ×, R
0 → 0, R
1 → 1, R

 → ◻ ◻, L

1 → , L☐× → ×, L
0 → 0, L
1 → 1, L

 × → ×, R
 → ☐ ☐, L

 1 → 1, L

 × → 0, L
 → ☐ ☐, R

Accept!

 → ◻ ◻, R

Edge
Case

 0 → 0, R

start

 → ☐ ☐, R

New Stuff!

Main Question for Today:
Just how powerful are Turing machines?

Another TM Design

● Last time, we designed a TM for this
language over Σ = {0, 1}:

L = { w ∈ Σ* | w has the same number
 of 0s and 1s }

● Let's do a quick review of how it
worked.

A Different Idea

0 0 0 1 1 1 0… …1

A Different Strategy

Last time, we built a machine that checks
whether a string has the form 0n1n.

That machine almost solves this problem,
but requires that the characters have to be

in order.

What if we sorted the input?

Last time, we built a machine that checks
whether a string has the form 0n1n.

That machine almost solves this problem,
but requires that the characters have to be

in order.

What if we sorted the input?

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string
of 0s and 1s is sorted
if it matches the regex

0*1*.

Observation 1: A string
of 0s and 1s is sorted
if it matches the regex

0*1*.

…0 0 0 1 1 1… 01

A Different Strategy

Observation 2: A string
of 0s and 1s is not

sorted if it contains 10
as a substring.

Observation 2: A string
of 0s and 1s is not

sorted if it contains 10
as a substring.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a
copy of 10 and replace

it with 01.

Idea: Repeatedly find a
copy of 10 and replace

it with 01.

Let's Build It!

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

1 → 1, R 1 → 1, R0 → 0, R

 0 → 1, L

1 → 0, L0 → 0, L
1 → 1, L

 → ◻ ◻, R

 → ◻ ◻, L → ◻ ◻, L

0 → 0, L
1 → 1, L

 → ◻ ◻, R

TM Subroutines

● A TM subroutine is a Turing machine
that, instead of accepting or rejecting an
input, does some sort of processing job.

● TM subroutines let us compose larger TMs
out of smaller TMs, just as you'd write a
larger program using lots of smaller helper
functions.

● Here, we saw a TM subroutine that sorts a
sequence of 0s and 1s into ascending order.

TM Subroutines

● Typically, when a subroutine is done
running, you have it enter a state
marked “done” with a dashed line
around it.

● When we're composing multiple
subroutines together – which we'll do in
a bit – the idea is that we'll snap in some
real state for the “done” state.

What other subroutines can we make?

TM Arithmetic

● Let's design a TM that, given a tape that
looks like this:

ends up having the tape look like this:

● In other words, we want to build a TM

that can add two numbers.

… 1 3 7 4 2 …

… 1 7 9 0 0 …

TM Arithmetic

● There are many ways we could in principle
design this TM.

● We're going to take the following approach:
– First, we'll build a TM that increments a number.
– Next, we'll build a TM that decrements a number.
– Then, we'll combine them together, repeatedly

decrementing the second number and adding one
to the first number.

Incrementing Numbers

● Let's begin by building a TM that increments a
number.

● We'll assume that
– the tape head points at the start of a number,
– there is are at least two blanks to the left of the number,

and
– that there's at least one blank at the start of the number.

● The tape head will end at the start of the number
after incrementing it.

… 9 9 8

Incrementing Numbers

 go to the end of the number;
 while (the current digit is 9) {
 set the current digit to 0;
 back up one digit;
 }
 increment the current digit;
 go to the start of the number;

 go to the end of the number;
 while (the current digit is 9) {
 set the current digit to 0;
 back up one digit;
 }
 increment the current digit;
 go to the start of the number;

Back
Home

Wrap
Nines

Back
Home

To
End

Wrap
Nines

To
End

done!

 0 → 0, L
 1 → 1, L

 …
 9 → 9, L

start
0 → 0, R
1 → 1, R

…
9 → 9, R

 → ◻ ◻, L
 9 → 0, L

 0 → 1, L
 1 → 2, L
 2 → 3, L

 …
 8 → 9, L
 → ◻ 1, L

 → ◻ ◻, R

Decrementing Numbers

● Now, let's build a TM that decrements a number.
● We'll assume that

– the tape head points at the start of a number,
– there is at least one blank on each side of the number.

● The tape head will end at the start of the number after
decrementing it.

● If the number is 0, then the subroutine should
somehow signal this rather than making the number
negative.

1 0 2

Non-
zero?
Non-
zero?

Back
Homedone!

Wrap
Zeros

Back
Home

To
End

Wrap
Zeros

To
End

start

0 → 0, R

1 → 1, R
2 → 2, R

…
9 → 9, R

0 → 0, R
1 → 1, R

…
9 → 9, R

 → ◻ ◻, L
 0 → 9, L

 1 → 0, L
 2 → 1, L
 3 → 2, L

 …
 9 → 8, L

 0 → 0, L
 1 → 1, L

 …
 9 → 9, L

 → ◻ ◻, R
n = 0

 → ◻ ◻, L

TM Subroutines

● Sometimes, a subroutine needs to report
back some information about what
happened.

● Just as a function can return multiple
different values, we'll allow subroutines to
have different “done” states.

● Each state can then be wired to a different
state, so a TM using the subroutine can
control what happens next.

Putting it All Together

● Our goal is to build a TM that, given two
numbers, adds those numbers together.

● Before:

● After:

1 3 7 4 2 ……

1 7 9 0 0 ……

decr done!To 2nd

num
decrTo 2nd

num

incr Go
homeincr

To 1st

num

Go
home

To 1st

num

start
0 → 0, R
1 → 1, R

...
9 → 9, R

 → ◻ ◻, R

done

 → ◻ ◻, L

 0 → 0, L
 1 → 1, L

 ...
 9 → 9, L

 0 → 0, L
 1 → 1, L

 ...
 9 → 9, L

 → ◻ ◻, R

done

n = 0

Using Subroutines

● Once you've built a subroutine, you can wire
it into another TM with something that,
schematically, looks like this:

● Intuitively, this corresponds to transitioning
to the start state of the subroutine, then
replacing the “done” state of the subroutine
with the state at the end of the transition.

subX → Y, D done

Time-Out for Announcements!

Problem Sets

● Problem Set Six was due at the start of
class today using late days. Solutions are
now available.
● As always, we strongly recommend reading

over the solution set – there’s a lot of good
advice in there!

● Problem Set Seven is due on Friday at
the start of class.

Midterm Exam Logistics

● The second midterm exam is tomorrow, Tuesday, May 23rd,
from 7:00PM – 10:00PM. Locations are divvied up by last
(family) name:
● Abb – Pag: Go to Hewlett 200.
● Par – Tak: Go to Sapp 114.
● Tan – Val: Go to Hewlett 101.
● Var – Yim: Go to Hewlett 102.
● You – Zuc: Go to Hewlett 103.

● You’re responsible for Lectures 00 – 13 and topics covered
in PS1 – PS5. Later lectures and problem sets won’t be
tested. The focus is on PS3 – PS5 and Lectures 06 – 13.

● The exam is closed-book, closed-computer, and limited-note.
You can bring a double-sided, 8.5” × 11” sheet of notes with
you to the exam, decorated however you’d like.

This is the part where I say
nice things about you!

Your Questions

“Tech evolves really fast. What can I do to
stay relevant in tech throughout my career
ie not get replaced by young college grads

in 10 years?”

In any skilled job – whether it’s tech, medicine, law, etc. –
you’ll always be learning new techniques and staying on top
of the latest developments. It’s either institutionalized
(e.g. law, medicine) or something that you’ll pick up on

the job (e.g. tech).

There’s a lot of way to have fun while doing this. Attend
conferences on topics you’re interested in. Join a paper-
reading group. Volunteer to work on projects in languages
and frameworks you don’t understand. Read blogs. Go on
Stack Overflow. Or do some combination of these things!

In any skilled job – whether it’s tech, medicine, law, etc. –
you’ll always be learning new techniques and staying on top
of the latest developments. It’s either institutionalized
(e.g. law, medicine) or something that you’ll pick up on

the job (e.g. tech).

There’s a lot of way to have fun while doing this. Attend
conferences on topics you’re interested in. Join a paper-
reading group. Volunteer to work on projects in languages
and frameworks you don’t understand. Read blogs. Go on
Stack Overflow. Or do some combination of these things!

“In your impression, how does Stanford's
CS department feel about Silicon Valley

and its controversies? I'm assuming they're
mostly very pro-SV; is that right?”

There are very close ties between Silicon Valley and the entire School
of Engineering – it’s one of the reasons why the tech industry is so

strong here and why the research program is so popular.

In my conversations with the faculty members here, I’ve found that
people are generally pretty reasonable and don’t blindly think that the
tech industry is somehow perfect or that it can’t do any wrong. It’s

typically more nuanced – most people generally like the idea of having a
healthy tech sector, many folks wish that the focus was less on

consumer tech, lots are upset about lack of diversity and toxic culture,
etc. That happens alongside many of them working for tech companies

or getting research funds from them.

There are very close ties between Silicon Valley and the entire School
of Engineering – it’s one of the reasons why the tech industry is so

strong here and why the research program is so popular.

In my conversations with the faculty members here, I’ve found that
people are generally pretty reasonable and don’t blindly think that the
tech industry is somehow perfect or that it can’t do any wrong. It’s

typically more nuanced – most people generally like the idea of having a
healthy tech sector, many folks wish that the focus was less on

consumer tech, lots are upset about lack of diversity and toxic culture,
etc. That happens alongside many of them working for tech companies

or getting research funds from them.

“Beyond finite automata, and how discrete
math applies to CS, what do you consider

to be the relevance of proofs and
mathematical reasoning in the real world?”
The discrete structures portion of this course is extremely valuable for thinking

about how to model complex structures in the real world. Jure Leskovec’s
research program largely involves trying to model human behavior from a graph-
theoretic perspective and using that to design interventions or otherwise predict

user behavior. Strict orders come up all the time in searching and sorting
algorithms, and equivalence relations are used in modeling hash tables.

Where we’re going with computability theory – the limits of computation – is
exceptionally valuable for understanding where you need to back up and search
for alternate solutions. As you’ll see, a lot of problems we’d love to be able to
solve in practice are provably impossible, and when that happens it indicates that

you need to switch directions or otherwise relax your constraints.

The sort of theory from CS109 and CS161 powers modern machine learning
techniques and is responsible for things like cell phones (FFT), Google Maps

(search algorithms) and the Internet (spanning trees). I’ll talk more about this
on our last day of class.

The discrete structures portion of this course is extremely valuable for thinking
about how to model complex structures in the real world. Jure Leskovec’s

research program largely involves trying to model human behavior from a graph-
theoretic perspective and using that to design interventions or otherwise predict

user behavior. Strict orders come up all the time in searching and sorting
algorithms, and equivalence relations are used in modeling hash tables.

Where we’re going with computability theory – the limits of computation – is
exceptionally valuable for understanding where you need to back up and search
for alternate solutions. As you’ll see, a lot of problems we’d love to be able to
solve in practice are provably impossible, and when that happens it indicates that

you need to switch directions or otherwise relax your constraints.

The sort of theory from CS109 and CS161 powers modern machine learning
techniques and is responsible for things like cell phones (FFT), Google Maps

(search algorithms) and the Internet (spanning trees). I’ll talk more about this
on our last day of class.

Back to CS103!

Main Question for Today:
Just how powerful are Turing machines?

How Powerful are TMs?

● Regular languages, intuitively, are as
powerful as computers with finite
memory.

● TMs by themselves seem like they can do
a fair number of tasks, but it's unclear
specifically what they can do.

● Let's explore their expressive power.

Real and “Ideal” Computers

● A real computer has memory limitations: you
have a finite amount of RAM, a finite amount of
disk space, etc.

● However, as computers get more and more
powerful, the amount of memory available keeps
increasing.

● An idealized computer is like a regular
computer, but with unlimited RAM and disk
space. It functions just like a regular computer,
but never runs out of memory.

Claim 1: Idealized computers can simulate
Turing machines.

“Anything that can be done with a TM
can also be done with an unbounded-

memory computer.”

Clear a
1q₂

Go to
end

Check
for 0 q₁q₀

Go to
startq₃

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc
q

a

 → ☐ ☐, R

q
acc
q

r

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q₀

q₁

q₂

q₃

0
q₁ ◻ R

1
q
r ◻ R

◻
q
a ◻ R

q₁ 0 R q₁ 1 R q₂ ◻ L
q
r 0 R q₃ ◻ L q

r ◻ R

q₃ 0 L q₃ 1 L q₀ ◻ R

The TM's finite-state control
can be encoded as a table,

making it easy for a
computer to look up

transitions information.

The TM's finite-state control
can be encoded as a table,

making it easy for a
computer to look up

transitions information.

Simulating a TM

● To simulate a TM, the computer would need to be able to
keep track of
● the finite-state control,
● the current state,
● the position of the tape head, and
● the tape contents.

● The tape contents are infinite, but that's because there
are infinitely many blanks on both sides.

● We only need to store the “interesting” part of the tape
(the parts that have been read from or written to so far.)

1 7 9 0 0

Claim 2: Turing machines can simulate
idealized computers.

“Anything that can be done with an
unbounded-memory computer can be done

with a TM.”

What We've Seen

● TMs can
● implement loops (basically, every TM we've seen).
● make function calls (subroutines).
● keep track of natural numbers (written in unary or

in decimal on the tape).
● perform elementary arithmetic (equality testing,

multiplication, addition, increment, decrement,
etc.).

● perform if/else tests (different transitions based on
different cases).

What Else Can TMs Do?

● Maintain variables.
● Have a dedicated part of the tape where the

variables are stored.
● We've seen this before: take a look at our machine

for composite numbers, or for increment/decrement.
● Maintain arrays and linked structures.

● Divide the tape into different regions corresponding
to memory locations.

● Represent arrays and linked structures by keeping
track of the ID of one of those regions.

A CS107 Perspective

● Internally, computers execute by using basic
operations like
● simple arithmetic,
● memory reads and writes,
● branches and jumps,
● register operations,
● etc.

● Each of these are simple enough that they
could be simulated by a Turing machine.

A Leap of Faith

● It may require a leap of faith, but anything you
can do a computer (excluding randomness and
user input) can be performed by a Turing
machine.

● The resulting TM might be colossal, or really
slow, or both, but it would still faithfully
simulate the computer.

● We're going to take this as an article of faith in
CS103. If you curious for more details, come
talk to me after class.

Just how powerful are Turing machines?

Effective Computation

● An effective method of computation is a form
of computation with the following properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step leads

to the next.
● Any computation that yields an answer does so in

finitely many steps.
● Any computation that yields an answer always yields

the correct answer.
● This is not a formal definition. Rather, it's a set

of properties we expect out of a computational
system.

The Church-Turing Thesis claims that

every effective method of computation is either
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
Solvable by

Any Feasible
Computing

Machine

Regular
Languages CFLs

All Languages

Problems
solvable by

Turing
Machines

TMs ≈ Computers

● Because Turing machines have the same
computational powers as regular computers, we
can (essentially) reason about Turing machines
by reasoning about actual computer programs.

● Going forward, we're going to switch back and
forth between TMs and computer programs
based on whatever is most appropriate.

● In fact, our eventual proofs about the existence
of impossible problems will involve a good
amount of pseudocode. Stay tuned for details!

