Mapping Reductions

Announcements

- Casual CS Dinner for Women Studying Computer Science: Thursday, March 7 at 6PM in Gates 219!
- RSVP through the email link sent out earlier today.

Announcements

- All Problem Set 6's are graded, will be returned at end of lecture.
- Problem Set 7 due right now, or due at Thursday at 12:50PM with a late day.
 - **Please submit no later than 12:50PM**; we're hoping to get solutions posted then. This is a hard deadline.
- Problem Set 8 out, due next Monday, March 11 at 12:50PM.
 - Explore the limits of computation!

Recap from Last Time

The Limits of Computability

- What's out here?

A Repeating Pattern

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \varepsilon \rangle$.
- Run R on $\langle M, \varepsilon \rangle$.
- If *R* accepts $\langle M, \varepsilon \rangle$, then *H* accepts $\langle M, \varepsilon \rangle$.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects $\langle M, \varepsilon \rangle$."

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M, \langle M \rangle \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M, \langle M \rangle \rangle$."

H = "On input $\langle M, w \rangle$:

- Build *M* into *M*' so *M*' loops when *M* rejects.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

The General Pattern

Reductions

• Intuitively, problem A **reduces** to problem B iff a solver for B can be used to solve problem A.

Reductions

• Intuitively, problem A **reduces** to problem B iff a solver for B can be used to solve problem A.

Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.
- Reductions can be used to show certain problems are "solvable:"

If A reduces to B and B is "solvable," then A is "solvable."

 Reductions can be used to show certain problems are "unsolvable:"

If A reduces to B and A is "unsolvable," then B is "unsolvable."

Defining Reductions

• A **reduction** from *A* to *B* is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$

Defining Reductions

• A **reduction** from *A* to *B* is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \notin A$ maps to some $f(w) \notin B$.
- *f* does not have to be injective or surjective.

Computable Functions

- Not all mathematical functions can be computed by Turing machines.
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **computable function** if there is some TM *M* with the following behavior:

"On input *w*:

Compute f(w) and write it on the tape. Move the tape head to the start of f(w). Halt."

Mapping Reductions

- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **mapping reduction** from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from *A* to *B* says that a computer can transform any instance of *A* into an instance of *B* such that the answer to *B* is the answer to *A*.

Mapping Reducibility

- If there is a mapping reduction from language A to language B, we say that language A is mapping reducible to language B.
- Notation: $A \leq_{M} B$ iff language A is mapping reducible to language B.
- Note that we reduce *languages*, not *machines*.
- Interesting exercise: Show \leq_{M} is reflexive and transitive, but not antisymmetric.

 If R rejects f(w), then H rejects w." If R is a co-recognizer for B, then H is a co-recognizer for A.

Why Mapping Reducibility Matters

- **Theorem**: If $B \in \mathbf{R}$ and $A \leq_{M} B$, then $A \in \mathbf{R}$.
- **Theorem**: If $B \in \mathbf{RE}$ and $A \leq_{M} B$, then $A \in \mathbf{RE}$.
- **Theorem**: If $B \in \text{co-RE}$ and $A \leq_M B$, then $A \in \text{co-RE}$.
- Intuitively: $A \leq_{M} B$ means "A is not harder than B."

Why Mapping Reducibility Matters

- **Theorem**: If $A \notin \mathbf{R}$ and $A \leq_{M} B$, then $B \notin \mathbf{R}$.
- **Theorem**: If $A \notin \mathbf{RE}$ and $A \leq_{M} B$, then $B \notin \mathbf{RE}$.
- **Theorem**: If $A \notin \text{co-RE}$ and $A \leq_M B$, then $B \notin \text{co-RE}$.
- Intuitively: $A \leq_{M} B$ means "B is at at least as hard as A."

Why Mapping Reducibility Matters

Using Mapping Reductions

Revisiting our Proofs

• Consider the language

 $L = \{ \langle M \rangle | M \text{ is a TM and } M \text{ accepts } \epsilon \}$

- We have already proven that this language is
 RE by building a TM for it.
- Let's repeat this proof using mapping reductions.
- Specifically, we will prove

 $L \leq_{\mathrm{M}} \mathrm{A}_{\mathrm{TM}}$

$L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } \epsilon \}$

- To prove $L \leq_{M} A_{TM}$, we will need to find a computable function f such that

 $\langle M \rangle \in L$ iff $f(\langle M \rangle) \in A_{TM}$

• Since A_{TM} is a language of TM/string pairs, let's assume $f(\langle M \rangle) = \langle N, w \rangle$ for some TM N and string w (which we'll pick later):

 $\langle M \rangle \in L$ iff $\langle N, w \rangle \in A_{TM}$

• Substituting definitions:

M accepts ε iff N accepts w

• Choose N = M, $w = \varepsilon$. So $f(\langle M \rangle) = \langle M, \varepsilon \rangle$.

One Interpretation of the Reduction

 $L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \epsilon \}$ *Theorem:* $L \in \mathbf{RE}$. *Proof:* We will prove that $L \leq_{M} A_{TM}$. Since $A_{TM} \in \mathbf{RE}$, this proves $L \in \mathbf{RE}$ as well.

Consider the function $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. We state without proof that this function is computable and claim that *f* is a mapping reduction from *L* to A_{TM} . To see this, note that $f(\langle M \rangle) = \langle M, \varepsilon \rangle \in A_{TM}$ iff *M* accepts ε iff $\langle M \rangle \in L$, so $\langle M \rangle \in L$ iff $f(\langle M \rangle) \in A_{TM}$.

Since *f* is a mapping reduction from *L* to A_{TM} , we have $L \leq_M A_{TM}$, and thus $L \in \mathbf{RE}$.

What Did We Prove?

Interpreting Mapping Reductions

- If $A \leq_{M} B$, there is a known construction to turn a TM for B into a TM for A.
- When doing proofs with mapping reductions, you do *not* need to show the overall construction.
- You just need to prove that
 - f is a computable function, and
 - $w \in A$ iff $f(w) \in B$.

Another Mapping Reduction

$L_{\rm D}$ and $\overline{\rm A}_{\rm TM}$

- Earlier, we proved $\overline{A}_{_{\rm TM}} \notin \mathbf{RE}$ by proving that

If $\overline{A}_{TM} \in \mathbf{RE}$, then $L_{D} \in \mathbf{RE}$.

- The proof constructed this TM, assuming R was a recognizer for $\overline{\mathrm{A}}_{\mathrm{TM}}.$
 - H ="On input $\langle M \rangle$:
 - Construct the string $\langle M, \langle M \rangle \rangle$.
 - Run *R* on $\langle M, \langle M \rangle \rangle$.
 - If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
 - If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."
- Let's do another proof using mapping reductions.

 $L_{\rm d} \leq_{\rm m} A_{\rm tm}$

- To prove that $\overline{A}_{TM} \notin \mathbf{RE}$, we will prove $L_{\mathbf{D}} \leq_{\mathbf{M}} \overline{\mathbf{A}}_{TM}$
- By our earlier theorem, since $L_{\rm D} \notin \mathbf{RE}$, we have that $\overline{A}_{\rm TM} \notin \mathbf{RE}$.
- Intuitively: \overline{A}_{TM} is "at least as hard" as L_{D} , and since $L_{D} \notin \mathbf{RE}$, this means $\overline{A}_{TM} \notin \mathbf{RE}$.

 $L_{\rm d} \leq_{\rm M} A_{\rm TM}$

• Goal: Find a computable function *f* such that

 $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{\rm A}_{\rm TM}$

- Simplifying this using the definition of $L_{\rm \scriptscriptstyle D}$

M does not accept $\langle M \rangle$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$

• Let's assume that $f(\langle M \rangle)$ has the form $\langle N, w \rangle$ for some TM N and string w. This means that

M does not accept $\langle M \rangle$ iff $\langle N, w \rangle \in \overline{A}_{TM}$

M does not accept (M) iff N does not accept w

- If we can choose w and N such that the above is true, we will have our reduction from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$.
- Choose N = M and $w = \langle M \rangle$.

One Interpretation of the Reduction

Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof: We exhibit a mapping reduction f from $L_{\rm D}$ to $\overline{\rm A}_{\rm TM}$. Consider the function f defined as follows:

 $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$

We claim that *f* can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \overline{A}_{\rm TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{\rm TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{\rm TM}$. By definition of $\overline{A}_{\rm TM}, \langle M, \langle M \rangle \rangle \in \overline{A}_{\rm TM}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Finally, note that $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in L_{\rm D}$. Thus $f(\langle M \rangle) \in \overline{A}_{\rm TM}$ iff $\langle M \rangle \in L_{\rm D}$, so *f* is a mapping reduction from $L_{\rm D}$ to $\overline{A}_{\rm TM}$.

Since *f* is a mapping reduction from $L_{\rm D}$ to $\overline{A}_{\rm TM}$, we have $L_{\rm D} \leq_{\rm M} \overline{A}_{\rm TM}$. Since $L_{\rm D} \notin \mathbf{RE}$ and $L_{\rm D} \leq_{\rm M} \overline{A}_{\rm TM}$, this means $\overline{A}_{\rm TM} \notin \mathbf{RE}$, as required.

Another Example of Mapping Reductions

A More Elaborate Reduction

- Since A_{TM} ∉ RE, there is no algorithm for determining whether a TM will not accept a given string.
- Could we check instead whether a TM *never* accepts a string?
- Consider the language

L_e = { (M) | M is a TM and M never accepts }

- How "hard" is L_{e} ? Is it **R**, **RE**, co-**RE**, or none of these?

Building an Intuition

- Before we even try to prove how "hard" this language is, we should build an intuition for its difficulty.
- L_{e} is *probably* not in **RE**, since if we were convinced a TM never accepted, it would be hard to find positive evidence of this.
- L_{e} is *probably* in co-**RE**, since if we were convinced that a TM *did* accept some string, we could exhaustively search over all strings and try to find the string it accepts.
- Best guess: $L_e \in \text{co-RE} \mathbf{R}$.

 $\overline{\mathbf{A}}_{\mathrm{TM}} \leq_{\mathrm{M}} L_{\mathrm{e}}$

- We will prove that $L_e \notin \mathbf{RE}$ by showing that $\overline{A}_{TM} \leq_M L_e$. (This also proves $L_e \notin \mathbf{R}$).
- We want to find a function *f* such that

 $\langle M, w \rangle \in \overline{A}_{TM}$ iff $f(\langle M, w \rangle) \in L_{e}$

• Since L_e is a language of TM descriptions, let's assume $f(\langle M, w \rangle) = \langle N \rangle$ for some TM N. Then

 $\langle M, w \rangle \in \overline{A}_{TM}$ iff $\langle N \rangle \in L_e$

- Expanding out definitions, we get
 M doesn't accept w iff N doesn't accept any strings
- How do we pick the machine *N*?

- Find a TM N such that N does not accept any strings iff M does not accept w.
- **Key idea:** Build *N* such that running *N* on any input runs *M* on *w*.
- Here is one choice of *N*:

N = "On input *x*:

Ignore *x*.

Run M on w.

If M accepts w, then N accepts x.

If M rejects w, then N rejects x."

- Notice that *N* "amplifies" what *M* does on *w*:
 - If *M* does not accept *w*, *N* does not accept anything.
 - If *M* does accept *w*, *N* accepts everything.

Justifying N

- Notice that our machine N has the machine M and string w built into it!
- This is different from the machines we have constructed in the past.
- How do we justify that it's possible for some TM to construct a new TM at all?

N = "On input x: Ignore x. Run M on w. If M accepts w, accept. If M rejects w, reject."

The Takeaway Point

- Turing machines can embed TMs inside of other TMs.
- TMs of the following form are legal:

```
H = "On input (M, w), where M is a TM:

Construct N = "On input x:
Do something with x.
Run M on w.
..."
Do something with N."
```

Theorem: $\overline{A}_{TM} \leq_M L_e$.

Proof: We exhibit a mapping reduction from \overline{A}_{TM} to L_{e} .

For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle N \rangle$, where $\langle N \rangle$ is defined in terms of M and w as follows:

N = "On input x:Ignore x. Run M on w. If M accepts w, then N accepts x. If M rejects w, then N rejects x."

We state without proof that N is computable. We further claim that $\langle M, w \rangle \in \overline{A}_{TM}$ iff $f(\langle M, w \rangle) \in L_{\rho}$. To see this, note that $f(\langle M, w \rangle) = N \in L_{\circ}$ iff N does not accept any strings. We claim that N does not accept any strings iff M does not accept w. To see this, note that M does not accept w iff M loops on w or M rejects w. By construction, if M loops on w, then N loops on all strings, and if M rejects w, then N rejects all strings. Thus Ndoes not accept any strings iff M does not accept w. Finally, Mdoes not accept w iff $\langle M, w \rangle \in \overline{A}_{TM}$. Thus $\langle M, w \rangle \in \overline{A}_{TM}$ iff $f(\langle M, w \rangle) \in L_{e}$, so f is a mapping reduction from \overline{A}_{TM} to L_{e} , and so $\overline{A}_{TM} \leq_{M} L_{e}$, as required.

Recitation Sections

The Limits of Computability

RE \cup co-**RE** is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither RE nor co-RE.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?

An Extremely Hard Problem

- Recall: All regular languages are also **RE**.
- This means that some TMs accept regular languages and some TMs do not.
- Let $\text{REGULAR}_{\text{TM}}$ be the language of all TM descriptions that accept regular languages:

 $\mathbf{REGULAR}_{\mathrm{TM}} = \{ \langle M \rangle \mid \mathscr{L}(M) \text{ is regular } \}$

• Is $\text{REGULAR}_{\text{TM}} \in \mathbb{R}$? How about \mathbb{RE} ? How about co- \mathbb{RE} ?

Building an Intuition

- If you were *convinced* that a TM had a regular language, how would you mechanically verify that?
- If you were *convinced* that a TM had a nonregular language, how would you mechanically verify that?
- Both of these seem difficult, if not impossible. Chances are REGULAR_{TM} is neither **RE** nor co-**RE**.

$\mathbf{REGULAR}_{\mathrm{TM}} \notin \mathbf{RE}$

- It turns out that REGULAR $_{\rm TM}$ is unrecognizable, meaning that there is no computer program that can confirm that another TM's language is regular!
- To do this, we'll do a reduction from $L_{\rm D}$ and prove that $L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$.

$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

• We want to find a computable function *f* such that

$\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in {\rm REGULAR}_{\rm TM}$.

• We need to choose N such that $f(\langle M \rangle) = \langle N \rangle$ for some TM N. Then

 $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in {\rm REGULAR}_{\rm TM}$

 $\langle M \rangle \in L_{\rm D}$ iff $\langle N \rangle \in {\rm REGULAR}_{\rm TM}$

- $(M) \notin \mathscr{L}(M)$ iff $\mathscr{L}(N)$ is regular.
- Question: How do we pick *N*?

$L_{\rm D} \leq_{\rm M} {\rm REGULAR}_{\rm TM}$

- We want to construct some N out of M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(N)$ is not regular.
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(N)$ is regular.
- One option: choose two languages, one regular and one nonregular, then construct N so its language switches from regular to nonregular based on whether $\langle M \rangle \notin \mathscr{L}(M)$.
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(N) = \{ \mathbf{0}^{n} \mathbf{1}^{n} \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(N) = \emptyset$

- We want to build N from M such that
 - If $\langle M \rangle \in \mathscr{L}(M)$, then $\mathscr{L}(N) = \{ \mathbf{0}^{n} \mathbf{1}^{n} \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathscr{L}(M)$, then $\mathscr{L}(N) = \emptyset$
- Here is one way to do this:

N = "On input *x*:

If x does not have the form $0^{n}1^{n}$, reject.

Run *M* on $\langle M \rangle$.

If *M* accepts, accept *x*.

If M rejects, reject x."

Theorem: $L_{\rm D} \leq_{\rm M} \text{REGULAR}_{\rm TM}$.

Proof: We exhibit a mapping reduction from $L_{\rm D}$ to REGULAR_{TM}.

For any TM *M*, let $f(\langle M \rangle) = \langle N \rangle$, where *N* is defined in terms of *M* as follows:

N = "On input *x*:

If x does not have the form $0^n 1^n$, then N rejects x. Run M on $\langle M \rangle$. If M accepts $\langle M \rangle$, then N accepts x.

If *M* rejects $\langle M \rangle$, then *N* rejects *x*."

We claim *f* is computable and omit the details from this proof. We further claim that $\langle M \rangle \in L_{\rm D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\rm TM}$. To see this, note that $f(\langle M \rangle) = \langle N \rangle \in \text{REGULAR}_{TM}$ iff $\mathscr{L}(N)$ is regular. We claim that $\mathscr{L}(N)$ is regular iff $\langle M \rangle \notin \mathscr{L}(M)$. To see this, note that if $\langle M \rangle \notin \mathscr{L}(M)$, then N never accepts any strings. Thus $\mathscr{L}(N) = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in \mathscr{L}(M)$, then N accepts all strings of the form $0^{n}1^{n}$, so we have that $\mathscr{L}(N) = \{ \mathbf{0}^{n} \mathbf{1}^{n} \mid n \in \mathbb{N} \}, \text{ which is not regular. Finally,}$ $\langle M \rangle \notin \mathscr{L}(\langle M \rangle)$ iff $\langle M \rangle \in L_{D}$. Thus $\langle M \rangle \in L_{D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$, so *f* is a mapping reduction from L_{D} to REGULAR_{TM}. Therefore, $L_{\rm D} \leq_{\rm M} \text{REGULAR}_{\rm TM}$.