
  

Mapping Reductions



  

Announcements

● Casual CS Dinner for Women Studying 
Computer Science: Thursday, March 7 
at 6PM in Gates 219!

● RSVP through the email link sent out 
earlier today.



  

Announcements

● All Problem Set 6's are graded, will be returned 
at end of lecture.

● Problem Set 7 due right now, or due at Thursday 
at 12:50PM with a late day.
● Please submit no later than 12:50PM; we're 

hoping to get solutions posted then.  This is a hard 
deadline.

● Problem Set 8 out, due next Monday, March 11 at 
12:50PM.
● Explore the limits of computation!



  

Recap from Last Time



  

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TMHALT

L
D

What's out here?



  

A Repeating Pattern



  

Recognizer
for ATM

Yes

No

⟨M⟩ 

ε

Machine R

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

Construct ⟨M, ε⟩ ⟨M⟩      

H

L = { ⟨M⟩ | M is a TM that accepts ε }



  

Recognizer
for ATM

Yes

No

⟨M⟩ 

⟨M⟩

Machine R

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ⟨M⟩⟩.
 

· Run R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.
 

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ⟨M⟩⟩.
 

· Run R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.
 

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

Construct ⟨M, ⟨M⟩⟩ ⟨M⟩      

H

From ATM to LD



  

Decider for
HALT

Yes

No

⟨M'⟩ 

w  

Machine D

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w                                         

⟨M⟩      

H

From HALT to ATM



  

Subroutine
TM

Machine R

YES

NO

Compute f
f(w)w        

Machine H

The General Pattern

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

LD ATM

Can be converted to

Can be used to solve



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

ATM HALT

Can be converted to

Can be used to solve



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

● Reductions can be used to show certain 
problems are “solvable:”

If A reduces to B and B is “solvable,”    
then A is “solvable.”    

● Reductions can be used to show certain 
problems are “unsolvable:”

If A reduces to B and A is “unsolvable,”  
then B is “unsolvable.”    



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

NO
Σ
1
* Σ

2
*

YES YES

NO

f(w)   

f(w)   



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or 

surjective.



  

Computable Functions

● Not all mathematical functions can be computed 
by Turing machines.

● A function f : Σ1* → Σ2* is called a computable 
function if there is some TM M with the following 
behavior:

          “On input w:

                Compute f(w) and write it on the tape.

                Move the tape head to the start of f(w).

                Halt.”



  

Mapping Reductions

● A function f : Σ1* → Σ2* is called a 
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A 
to B says that a computer can transform 
any instance of A into an instance of B 
such that the answer to B is the answer 
to A.



  

TM for
language B

Machine R

YES

NO

Compute f
f(w)w    

Machine H

w ∈ A    iff    f(w) ∈ B

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A



  

Mapping Reducibility

● If there is a mapping reduction from language 
A to language B, we say that language A is 
mapping reducible to language B.

● Notation: A ≤M B iff language A is mapping 
reducible to language B.

● Note that we reduce languages, not 
machines.

● Interesting exercise: Show ≤M is reflexive and 
transitive, but not antisymmetric.



  

TM for
language B

Machine R

YES

NO

Compute f
f(w)w    

Machine H

A ≤M B

 

H = “On input w:
 

· Compute f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then
  H accepts w.

 

· If R rejects f(w), then
  H rejects w.”

 

H = “On input w:
 

· Compute f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then
  H accepts w.

 

· If R rejects f(w), then
  H rejects w.”

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.



  

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
                  A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
                  A ∈ RE.

● Theorem: If B ∈ co-RE and A ≤M B, then
                  A ∈ co-RE.

● Intuitively: A ≤M B means “A is not 
harder than B.”



  

Why Mapping Reducibility Matters

● Theorem: If A ∉ R and A ≤M B, then
                  B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
                  B ∉ RE.

● Theorem: If A ∉ co-RE and A ≤M B, then
                  B ∉ co-RE.

● Intuitively: A ≤M B means “B is at at least 
as hard as A.”



  

Why Mapping Reducibility Matters

≤MA B

If this one is “easy” 
(R, RE, co-RE)…

If this one is “easy” 
(R, RE, co-RE)…

… then this one is 
“easy” (R, RE, 
co-RE) too. 

… then this one is 
“easy” (R, RE, 
co-RE) too. 



  

Why Mapping Reducibility Matters

≤MA B

If this one is “hard” 
(not R, not RE, or not 

co-RE)…

If this one is “hard” 
(not R, not RE, or not 

co-RE)…

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.



  

Using Mapping Reductions



  

Revisiting our Proofs

● Consider the language

L = { ⟨M⟩ | M is a TM and M accepts ε } 

● We have already proven that this language is 
RE by building a TM for it.

● Let's repeat this proof using mapping 
reductions.

● Specifically, we will prove

L ≤M ATM



  

L = { ⟨M⟩ | M is a TM and M accepts ε }

● To prove L ≤M ATM, we will need to find a 
computable function f such that

⟨M⟩ ∈ L    iff    f(⟨M⟩)  ∈ ATM   

● Since ATM is a language of TM/string pairs, let's 
assume f(⟨M⟩) = ⟨N, w⟩ for some TM N and string 
w (which we'll pick later):

⟨M⟩ ∈ L   iff   ⟨N, w⟩ ∈ ATM    

● Substituting definitions:

M accepts ε   iff   N accepts w   

● Choose N = M, w = ε.  So f(⟨M⟩) = ⟨M, ε⟩.



  

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩     

Machine H

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L



  

L = { ⟨M⟩ | M is a TM that accepts ε }
 

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM.  Since

ATM ∈ RE, this proves L ∈ RE as well.
 

Consider the function f(⟨M⟩) = ⟨M, ε⟩.  We
state without proof that this function is
computable and claim that f is a mapping
reduction from L to ATM.  To see this, note
that f(⟨M⟩) = ⟨M, ε⟩ ∈ ATM iff M accepts ε iff
⟨M⟩ ∈ L, so ⟨M⟩ ∈ L iff f(⟨M⟩) ∈ ATM.

 

Since f is a mapping reduction from L to
ATM, we have L ≤M ATM, and thus L ∈ RE. ■



  

What Did We Prove?

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩     

Machine H

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L



  

Interpreting Mapping Reductions

● If A ≤M B, there is a known construction to 
turn a TM for B into a TM for A.

● When doing proofs with mapping 
reductions, you do not need to show the 
overall construction.

● You just need to prove that
● f is a computable function, and
● w ∈ A  iff  f(w) ∈ B.



  

Another Mapping Reduction



  

LD and ATM

● Earlier, we proved ATM ∉ RE by proving that

If ATM ∈ RE, then LD ∈ RE.   

● The proof constructed this TM, assuming R was a 
recognizer for ATM.

● Let's do another proof using mapping reductions.

 

H = “On input ⟨M⟩:
 

  · Construct the string ⟨M, ⟨M⟩⟩.
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.
 

  · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”
 

 

H = “On input ⟨M⟩:
 

  · Construct the string ⟨M, ⟨M⟩⟩.
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.
 

  · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”
 



  

LD ≤M ATM

● To prove that ATM ∉ RE, we will prove

LD ≤M ATM    

● By our earlier theorem, since LD ∉ RE, 
we have that ATM ∉ RE.

● Intuitively: ATM is “at least as hard” as LD, 
and since LD ∉ RE, this means ATM ∉ RE.



  

LD ≤M ATM

● Goal: Find a computable function f such that

⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ ATM  

● Simplifying this using the definition of LD

M does not accept ⟨M⟩      iff     f(⟨M⟩) ∈ ATM      

● Let's assume that f(⟨M⟩) has the form ⟨N, w⟩ for some TM N 
and string w.  This means that

    M does not accept ⟨M⟩     iff     ⟨N, w⟩ ∈ ATM                 

M does not accept ⟨M⟩     iff     N does not accept w
● If we can choose w and N such that the above is true, we will 

have our reduction from LD to ATM.

● Choose N = M and w = ⟨M⟩.



  

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩     

Machine H

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then
  H accepts w.

 

· If R rejects ⟨M, ⟨M⟩⟩, then
  H rejects w.”

 

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then
  H accepts w.

 

· If R rejects ⟨M, ⟨M⟩⟩, then
  H rejects w.”

 

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ⟨M⟩⟩
 

iff
 

M does not accept ⟨M⟩
 

iff
 

⟨M⟩ ∈ LD

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ⟨M⟩⟩
 

iff
 

M does not accept ⟨M⟩
 

iff
 

⟨M⟩ ∈ LD



  

Theorem: ATM ∉ RE.
Proof: We exhibit a mapping reduction f from LD to ATM. 

Consider the function f defined as follows:
 

f(⟨M⟩) = ⟨M, ⟨M⟩⟩
 

We claim that f can be computed by a TM and omit the
details from this proof.  We will prove that ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ATM.  Note that f(⟨M⟩) = ⟨M, ⟨M⟩⟩, so f(⟨M⟩) ∈ ATM 
iff ⟨M, ⟨M⟩⟩ ∈ ATM.  By definition of ATM, ⟨M, ⟨M⟩⟩ ∈ ATM iff
⟨M⟩ ∉ (ℒ M).  Finally, note that ⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ LD. 
Thus f(⟨M⟩) ∈ ATM iff ⟨M⟩ ∈ LD, so f is a mapping reduction
from LD to ATM.

Since f is a mapping reduction from LD to ATM, we have
LD ≤M ATM.  Since LD ∉ RE and LD ≤M ATM, this means
ATM ∉ RE, as required. ■



  

Another Example of
Mapping Reductions



  

A More Elaborate Reduction

● Since ATM ∉ RE, there is no algorithm for 
determining whether a TM will not accept a 
given string.

● Could we check instead whether a TM never 
accepts a string?

● Consider the language

Le = { ⟨M⟩ | M is a TM and   
                        M never accepts }  

● How “hard” is Le?  Is it R, RE, co-RE, or none of 
these?



  

Building an Intuition

● Before we even try to prove how “hard” this 
language is, we should build an intuition for its 
difficulty.

● Le is probably not in RE, since if we were 
convinced a TM never accepted, it would be 
hard to find positive evidence of this.

● Le is probably in co-RE, since if we were 
convinced that a TM did accept some string, 
we could exhaustively search over all strings 
and try to find the string it accepts.

● Best guess: Le ∈ co-RE – R.



  

ATM ≤M Le

● We will prove that Le ∉ RE by showing that ATM ≤M Le.  
(This also proves Le ∉ R).

● We want to find a function f such that

⟨M, w⟩ ∈ ATM     iff     f(⟨M, w⟩) ∈ Le

● Since Le is a language of TM descriptions, let's assume 
f(⟨M, w⟩) = ⟨N⟩ for some TM N.  Then 

⟨M, w⟩ ∈ ATM     iff     ⟨N⟩ ∈ Le

● Expanding out definitions, we get

M doesn't accept w  iff  N doesn't accept any strings

● How do we pick the machine N?



  

The Reduction
● Find a TM N such that N does not accept any strings iff M 

does not accept w.

● Key idea: Build N such that running N on any input runs M 
on w.

● Here is one choice of N:

             N = “On input x:

                          Ignore x.

                          Run M on w.

                          If M accepts w, then N accepts x.

                          If M rejects w, then N rejects x.”

● Notice that N “amplifies” what M does on w:

● If M does not accept w, N does not accept anything.

● If M does accept w, N accepts everything.



  

The Reduction

Simulate
M on w

             x              
(Ignored)

Machine for
Le

Construct
N from
⟨M, w⟩

⟨N⟩               ⟨M, w⟩                        

Machine H

Machine 
N

This is a 
recognizer for 

ATM!

This is a 
recognizer for 

ATM!



  

The Reduction

Simulate
M on w

             x              
(Ignored)

Machine for
Le

Construct
N from
⟨M, w⟩

⟨N⟩               ⟨M, w⟩                        

Machine H

Machine 
N

How is this 
step possible?
How is this 
step possible?



  

Justifying N

● Notice that our 
machine N has the 
machine M and string 
w built into it!

● This is different from 
the machines we 
have constructed in 
the past.

● How do we justify 
that it's possible for 
some TM to construct 
a new TM at all?

N = “On input x:

     Ignore x.

     Run M on w.

     If M accepts w, accept.

     If M rejects w, reject.”



  

Erase

N = “On input x:
 

· Ignore x.
 

· Run M on w.
 

· If M accepts w,
   then N accepts x.

 

· If M rejects w,
   then N rejects x.”

N = “On input x:
 

· Ignore x.
 

· Run M on w.
 

· If M accepts w,
   then N accepts x.

 

· If M rejects w,
   then N rejects x.”

Hypothetically, 
assume that w is the 

string 11011.

Hypothetically, 
assume that w is the 

string 11011.

qstart qacc

qrej

qacc

qrej

        M

1… 1 0 1 1 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R                    

1101111011
 → ☐ 1, R → ☐ 1, R

0 → 0, L
1 → 1, L

                    → ☐ ☐, R



  

The Takeaway Point

● Turing machines can embed TMs inside 
of other TMs.

● TMs of the following form are legal:

H = “On input ⟨M, w⟩, where M is a TM:
 

· Construct N = “On input x:
 

· Do something with x.
 

· Run M on w.
 

· …”
 

· Do something with N.”

H = “On input ⟨M, w⟩, where M is a TM:
 

· Construct N = “On input x:
 

· Do something with x.
 

· Run M on w.
 

· …”
 

· Do something with N.”



  

Theorem: ATM ≤M Le.
Proof: We exhibit a mapping reduction from ATM to Le. 

For any TM/string pair ⟨M, w⟩, let f(⟨M, w⟩) = ⟨N⟩, where ⟨N⟩ is
defined in terms of M and w as follows:

 

N = “On input x:
Ignore x.
Run M on w.
If M accepts w, then N accepts x.
If M rejects w, then N rejects x.”

 

We state without proof that N is computable.  We further claim
that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ Le.  To see this, note that
f(⟨M, w⟩) = N ∈ Le iff N does not accept any strings.  We claim
that N does not accept any strings iff M does not accept w.  To
see this, note that M does not accept w iff M loops on w or M
rejects w.  By construction, if M loops on w, then N loops on all
strings, and if M rejects w, then N rejects all strings.  Thus N
does not accept any strings iff M does not accept w.  Finally, M
does not accept w iff ⟨M, w⟩ ∈ ATM.  Thus ⟨M, w⟩ ∈ ATM iff
f(⟨M, w⟩) ∈ Le, so f is a mapping reduction from ATM to Le, and so
ATM ≤M Le, as required. ■



  

Recitation Sections



  

The Limits of Computability

RE

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TMHALT

L
D

What's out here?

ONESONES

L
e

L
e



  

RE ∪ co-RE is Not Everything

● Using the same reasoning as the first day 
of lecture, we can show that there must 
be problems that are neither RE nor 
co-RE.

● There are more sets of strings than TMs.
● There are more sets of strings than twice 

the number of TMs.
● What do these languages look like?



  

An Extremely Hard Problem

● Recall: All regular languages are also RE.
● This means that some TMs accept regular languages 

and some TMs do not.

● Let REGULARTM be the language of all TM 
descriptions that accept regular languages:

REGULARTM = { ⟨M⟩ | ℒ(M) is regular }  

● Is REGULARTM ∈ R?  How about RE?  How about 
co-RE?



  

Building an Intuition

● If you were convinced that a TM had a 
regular language, how would you 
mechanically verify that?

● If you were convinced that a TM had a 
nonregular language, how would you 
mechanically verify that?

● Both of these seem difficult, if not 
impossible.  Chances are REGULARTM is 
neither RE nor co-RE.



  

REGULARTM ∉ RE

● It turns out that REGULARTM is 
unrecognizable, meaning that there is no 
computer program that can confirm that 
another TM's language is regular!

● To do this, we'll do a reduction from LD 
and prove that LD ≤M REGULARTM.



  

LD ≤M REGULARTM

● We want to find a computable function f such 
that

   ⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ REGULARTM.

● We need to choose N such that f(⟨M⟩) = ⟨N⟩ for 
some TM N. Then

    ⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ REGULARTM     

⟨M⟩ ∈ LD     iff     ⟨N⟩ ∈ REGULARTM

⟨M⟩ ∉ ℒ(M)     iff     ℒ(N) is regular.          
● Question: How do we pick N?



  

LD ≤M REGULARTM

● We want to construct some N out of M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ N) is not regular.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ N) is regular.

● One option: choose two languages, one regular 
and one nonregular, then construct N so its 
language switches from regular to nonregular 
based on whether ⟨M⟩ ∉ (ℒ M).
● If ⟨M⟩ ∈ (ℒ M), then (ℒ N) = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ N) = Ø



  

The Reduction

● We want to build N from M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ N) = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ N) = Ø

● Here is one way to do this:

    N = “On input x:

                If x does not have the form 0n1n, reject.

                Run M on ⟨M⟩.

                If M accepts, accept x.

                If M rejects, reject x.”



  

Theorem: LD ≤M REGULARTM.
Proof: We exhibit a mapping reduction from LD to REGULARTM. 

For any TM M, let f(⟨M⟩) = ⟨N⟩, where N is defined in terms of
M as follows:

 

N = “On input x:
If x does not have the form 0n1n, then N rejects x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, then N accepts x.
If M rejects ⟨M⟩, then N rejects x.”

 

We claim f is computable and omit the details from this proof.
We further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM.  To
see this, note that f(⟨M⟩) = ⟨N⟩ ∈ REGULARTM iff (ℒ N) is
regular.  We claim that (ℒ N) is regular iff ⟨M⟩ ∉ (ℒ M).  To see
this, note that if ⟨M⟩ ∉ (ℒ M), then N never accepts any strings.
Thus (ℒ N) = Ø, which is regular.  Otherwise, if ⟨M⟩ ∈ (ℒ M),
then N accepts all strings of the form 0n1n, so we have that
ℒ(N) = { 0n1n | n ∈ ℕ }, which is not regular.  Finally,
⟨M⟩ ∉ (⟨ℒ M⟩) iff ⟨M⟩ ∈ LD. Thus ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM, 
so f is a mapping reduction from LD to REGULARTM.  Therefore,
LD ≤M REGULARTM. ■
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