
  

Mapping Reductions



  

Announcements

● Casual CS Dinner for Women Studying 
Computer Science: Thursday, March 7 
at 6PM in Gates 219!

● RSVP through the email link sent out 
earlier today.



  

Announcements

● All Problem Set 6's are graded, will be returned 
at end of lecture.

● Problem Set 7 due right now, or due at Thursday 
at 12:50PM with a late day.
● Please submit no later than 12:50PM; we're 

hoping to get solutions posted then.  This is a hard 
deadline.

● Problem Set 8 out, due next Monday, March 11 at 
12:50PM.
● Explore the limits of computation!



  

Recap from Last Time



  

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TMHALT

L
D

What's out here?



  

A Repeating Pattern



  

Recognizer
for ATM

Yes

No

⟨M⟩ 

ε

Machine R

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

Construct ⟨M, ε⟩ ⟨M⟩      

H

L = { ⟨M⟩ | M is a TM that accepts ε }



  

Recognizer
for ATM

Yes

No

⟨M⟩ 

⟨M⟩

Machine R

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ⟨M⟩⟩.
 

· Run R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.
 

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ⟨M⟩⟩.
 

· Run R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.
 

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

Construct ⟨M, ⟨M⟩⟩ ⟨M⟩      

H

From ATM to LD



  

Decider for
HALT

Yes

No

⟨M'⟩ 

w  

Machine D

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w                                         

⟨M⟩      

H

From HALT to ATM



  

Subroutine
TM

Machine R

YES

NO

Compute f
f(w)w        

Machine H

The General Pattern

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

LD ATM

Can be converted to

Can be used to solve



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

ATM HALT

Can be converted to

Can be used to solve



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

● Reductions can be used to show certain 
problems are “solvable:”

If A reduces to B and B is “solvable,”    
then A is “solvable.”    

● Reductions can be used to show certain 
problems are “unsolvable:”

If A reduces to B and A is “unsolvable,”  
then B is “unsolvable.”    



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

NO
Σ
1
* Σ

2
*

YES YES

NO

f(w)   

f(w)   



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or 

surjective.



  

Computable Functions

● Not all mathematical functions can be computed 
by Turing machines.

● A function f : Σ1* → Σ2* is called a computable 
function if there is some TM M with the following 
behavior:

          “On input w:

                Compute f(w) and write it on the tape.

                Move the tape head to the start of f(w).

                Halt.”



  

Mapping Reductions

● A function f : Σ1* → Σ2* is called a 
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A 
to B says that a computer can transform 
any instance of A into an instance of B 
such that the answer to B is the answer 
to A.



  

TM for
language B

Machine R

YES

NO

Compute f
f(w)w    

Machine H

w ∈ A    iff    f(w) ∈ B

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A



  

Mapping Reducibility

● If there is a mapping reduction from language 
A to language B, we say that language A is 
mapping reducible to language B.

● Notation: A ≤M B iff language A is mapping 
reducible to language B.

● Note that we reduce languages, not 
machines.

● Interesting exercise: Show ≤M is reflexive and 
transitive, but not antisymmetric.



  

TM for
language B

Machine R

YES

NO

Compute f
f(w)w    

Machine H

A ≤M B

 

H = “On input w:
 

· Compute f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then
  H accepts w.

 

· If R rejects f(w), then
  H rejects w.”

 

H = “On input w:
 

· Compute f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then
  H accepts w.

 

· If R rejects f(w), then
  H rejects w.”

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.



  

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
                  A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
                  A ∈ RE.

● Theorem: If B ∈ co-RE and A ≤M B, then
                  A ∈ co-RE.

● Intuitively: A ≤M B means “A is not 
harder than B.”



  

Why Mapping Reducibility Matters

● Theorem: If A ∉ R and A ≤M B, then
                  B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
                  B ∉ RE.

● Theorem: If A ∉ co-RE and A ≤M B, then
                  B ∉ co-RE.

● Intuitively: A ≤M B means “B is at at least 
as hard as A.”



  

Why Mapping Reducibility Matters

≤MA B

If this one is “easy” 
(R, RE, co-RE)…

If this one is “easy” 
(R, RE, co-RE)…

… then this one is 
“easy” (R, RE, 
co-RE) too. 

… then this one is 
“easy” (R, RE, 
co-RE) too. 



  

Why Mapping Reducibility Matters

≤MA B

If this one is “hard” 
(not R, not RE, or not 

co-RE)…

If this one is “hard” 
(not R, not RE, or not 

co-RE)…

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.



  

Using Mapping Reductions



  

Revisiting our Proofs

● Consider the language

L = { ⟨M⟩ | M is a TM and M accepts ε } 

● We have already proven that this language is 
RE by building a TM for it.

● Let's repeat this proof using mapping 
reductions.

● Specifically, we will prove

L ≤M ATM



  

L = { ⟨M⟩ | M is a TM and M accepts ε }

● To prove L ≤M ATM, we will need to find a 
computable function f such that

⟨M⟩ ∈ L    iff    f(⟨M⟩)  ∈ ATM   

● Since ATM is a language of TM/string pairs, let's 
assume f(⟨M⟩) = ⟨N, w⟩ for some TM N and string 
w (which we'll pick later):

⟨M⟩ ∈ L   iff   ⟨N, w⟩ ∈ ATM    

● Substituting definitions:

M accepts ε   iff   N accepts w   

● Choose N = M, w = ε.  So f(⟨M⟩) = ⟨M, ε⟩.



  

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩     

Machine H

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L



  

L = { ⟨M⟩ | M is a TM that accepts ε }
 

Theorem: L ∈ RE.
Proof: We will prove that L ≤M ATM.  Since

ATM ∈ RE, this proves L ∈ RE as well.
 

Consider the function f(⟨M⟩) = ⟨M, ε⟩.  We
state without proof that this function is
computable and claim that f is a mapping
reduction from L to ATM.  To see this, note
that f(⟨M⟩) = ⟨M, ε⟩ ∈ ATM iff M accepts ε iff
⟨M⟩ ∈ L, so ⟨M⟩ ∈ L iff f(⟨M⟩) ∈ ATM.

 

Since f is a mapping reduction from L to
ATM, we have L ≤M ATM, and thus L ∈ RE. ■



  

What Did We Prove?

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ε⟩⟨M⟩     

Machine H

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then
  H accepts w.

 

· If R rejects ⟨M, ε⟩, then
  H rejects w.”

 

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ε⟩
 

iff
 

M accepts ε
 

iff
 

⟨M⟩ ∈ L



  

Interpreting Mapping Reductions

● If A ≤M B, there is a known construction to 
turn a TM for B into a TM for A.

● When doing proofs with mapping 
reductions, you do not need to show the 
overall construction.

● You just need to prove that
● f is a computable function, and
● w ∈ A  iff  f(w) ∈ B.



  

Another Mapping Reduction



  

LD and ATM

● Earlier, we proved ATM ∉ RE by proving that

If ATM ∈ RE, then LD ∈ RE.   

● The proof constructed this TM, assuming R was a 
recognizer for ATM.

● Let's do another proof using mapping reductions.

 

H = “On input ⟨M⟩:
 

  · Construct the string ⟨M, ⟨M⟩⟩.
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.
 

  · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”
 

 

H = “On input ⟨M⟩:
 

  · Construct the string ⟨M, ⟨M⟩⟩.
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M⟩.
 

  · If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M⟩.”
 



  

LD ≤M ATM

● To prove that ATM ∉ RE, we will prove

LD ≤M ATM    

● By our earlier theorem, since LD ∉ RE, 
we have that ATM ∉ RE.

● Intuitively: ATM is “at least as hard” as LD, 
and since LD ∉ RE, this means ATM ∉ RE.



  

LD ≤M ATM

● Goal: Find a computable function f such that

⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ ATM  

● Simplifying this using the definition of LD

M does not accept ⟨M⟩      iff     f(⟨M⟩) ∈ ATM      

● Let's assume that f(⟨M⟩) has the form ⟨N, w⟩ for some TM N 
and string w.  This means that

    M does not accept ⟨M⟩     iff     ⟨N, w⟩ ∈ ATM                 

M does not accept ⟨M⟩     iff     N does not accept w
● If we can choose w and N such that the above is true, we will 

have our reduction from LD to ATM.

● Choose N = M and w = ⟨M⟩.



  

One Interpretation of the Reduction

Recognizer
for ATM

Machine R

YES

NO

Compute f
⟨M, ⟨M⟩⟩⟨M⟩     

Machine H

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then
  H accepts w.

 

· If R rejects ⟨M, ⟨M⟩⟩, then
  H rejects w.”

 

 

H = “On input ⟨M⟩:
 

· Run machine R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then
  H accepts w.

 

· If R rejects ⟨M, ⟨M⟩⟩, then
  H rejects w.”

 

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ⟨M⟩⟩
 

iff
 

M does not accept ⟨M⟩
 

iff
 

⟨M⟩ ∈ LD

H accepts ⟨M⟩
 

iff
 

R accepts ⟨M, ⟨M⟩⟩
 

iff
 

M does not accept ⟨M⟩
 

iff
 

⟨M⟩ ∈ LD



  

Theorem: ATM ∉ RE.
Proof: We exhibit a mapping reduction f from LD to ATM. 

Consider the function f defined as follows:
 

f(⟨M⟩) = ⟨M, ⟨M⟩⟩
 

We claim that f can be computed by a TM and omit the
details from this proof.  We will prove that ⟨M⟩ ∈ LD iff
f(⟨M⟩) ∈ ATM.  Note that f(⟨M⟩) = ⟨M, ⟨M⟩⟩, so f(⟨M⟩) ∈ ATM 
iff ⟨M, ⟨M⟩⟩ ∈ ATM.  By definition of ATM, ⟨M, ⟨M⟩⟩ ∈ ATM iff
⟨M⟩ ∉ (ℒ M).  Finally, note that ⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ LD. 
Thus f(⟨M⟩) ∈ ATM iff ⟨M⟩ ∈ LD, so f is a mapping reduction
from LD to ATM.

Since f is a mapping reduction from LD to ATM, we have
LD ≤M ATM.  Since LD ∉ RE and LD ≤M ATM, this means
ATM ∉ RE, as required. ■



  

Another Example of
Mapping Reductions



  

A More Elaborate Reduction

● Since ATM ∉ RE, there is no algorithm for 
determining whether a TM will not accept a 
given string.

● Could we check instead whether a TM never 
accepts a string?

● Consider the language

Le = { ⟨M⟩ | M is a TM and   
                        M never accepts }  

● How “hard” is Le?  Is it R, RE, co-RE, or none of 
these?



  

Building an Intuition

● Before we even try to prove how “hard” this 
language is, we should build an intuition for its 
difficulty.

● Le is probably not in RE, since if we were 
convinced a TM never accepted, it would be 
hard to find positive evidence of this.

● Le is probably in co-RE, since if we were 
convinced that a TM did accept some string, 
we could exhaustively search over all strings 
and try to find the string it accepts.

● Best guess: Le ∈ co-RE – R.



  

ATM ≤M Le

● We will prove that Le ∉ RE by showing that ATM ≤M Le.  
(This also proves Le ∉ R).

● We want to find a function f such that

⟨M, w⟩ ∈ ATM     iff     f(⟨M, w⟩) ∈ Le

● Since Le is a language of TM descriptions, let's assume 
f(⟨M, w⟩) = ⟨N⟩ for some TM N.  Then 

⟨M, w⟩ ∈ ATM     iff     ⟨N⟩ ∈ Le

● Expanding out definitions, we get

M doesn't accept w  iff  N doesn't accept any strings

● How do we pick the machine N?



  

The Reduction
● Find a TM N such that N does not accept any strings iff M 

does not accept w.

● Key idea: Build N such that running N on any input runs M 
on w.

● Here is one choice of N:

             N = “On input x:

                          Ignore x.

                          Run M on w.

                          If M accepts w, then N accepts x.

                          If M rejects w, then N rejects x.”

● Notice that N “amplifies” what M does on w:

● If M does not accept w, N does not accept anything.

● If M does accept w, N accepts everything.



  

The Reduction

Simulate
M on w

             x              
(Ignored)

Machine for
Le

Construct
N from
⟨M, w⟩

⟨N⟩               ⟨M, w⟩                        

Machine H

Machine 
N

This is a 
recognizer for 

ATM!

This is a 
recognizer for 

ATM!



  

The Reduction

Simulate
M on w

             x              
(Ignored)

Machine for
Le

Construct
N from
⟨M, w⟩

⟨N⟩               ⟨M, w⟩                        

Machine H

Machine 
N

How is this 
step possible?
How is this 
step possible?



  

Justifying N

● Notice that our 
machine N has the 
machine M and string 
w built into it!

● This is different from 
the machines we 
have constructed in 
the past.

● How do we justify 
that it's possible for 
some TM to construct 
a new TM at all?

N = “On input x:

     Ignore x.

     Run M on w.

     If M accepts w, accept.

     If M rejects w, reject.”



  

Erase

N = “On input x:
 

· Ignore x.
 

· Run M on w.
 

· If M accepts w,
   then N accepts x.

 

· If M rejects w,
   then N rejects x.”

N = “On input x:
 

· Ignore x.
 

· Run M on w.
 

· If M accepts w,
   then N accepts x.

 

· If M rejects w,
   then N rejects x.”

Hypothetically, 
assume that w is the 

string 11011.

Hypothetically, 
assume that w is the 

string 11011.

qstart qacc

qrej

qacc

qrej

        M

1… 1 0 1 1 …

start

0 → , R☐
1 → , R☐

1
 → ☐ 1, R

1111
 → ☐ 1, R

11011011011101

 → ☐ 0, R                    

1101111011
 → ☐ 1, R → ☐ 1, R

0 → 0, L
1 → 1, L

                    → ☐ ☐, R



  

The Takeaway Point

● Turing machines can embed TMs inside 
of other TMs.

● TMs of the following form are legal:

H = “On input ⟨M, w⟩, where M is a TM:
 

· Construct N = “On input x:
 

· Do something with x.
 

· Run M on w.
 

· …”
 

· Do something with N.”

H = “On input ⟨M, w⟩, where M is a TM:
 

· Construct N = “On input x:
 

· Do something with x.
 

· Run M on w.
 

· …”
 

· Do something with N.”



  

Theorem: ATM ≤M Le.
Proof: We exhibit a mapping reduction from ATM to Le. 

For any TM/string pair ⟨M, w⟩, let f(⟨M, w⟩) = ⟨N⟩, where ⟨N⟩ is
defined in terms of M and w as follows:

 

N = “On input x:
Ignore x.
Run M on w.
If M accepts w, then N accepts x.
If M rejects w, then N rejects x.”

 

We state without proof that N is computable.  We further claim
that ⟨M, w⟩ ∈ ATM iff f(⟨M, w⟩) ∈ Le.  To see this, note that
f(⟨M, w⟩) = N ∈ Le iff N does not accept any strings.  We claim
that N does not accept any strings iff M does not accept w.  To
see this, note that M does not accept w iff M loops on w or M
rejects w.  By construction, if M loops on w, then N loops on all
strings, and if M rejects w, then N rejects all strings.  Thus N
does not accept any strings iff M does not accept w.  Finally, M
does not accept w iff ⟨M, w⟩ ∈ ATM.  Thus ⟨M, w⟩ ∈ ATM iff
f(⟨M, w⟩) ∈ Le, so f is a mapping reduction from ATM to Le, and so
ATM ≤M Le, as required. ■



  

Recitation Sections



  

The Limits of Computability

RE

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TMHALT

L
D

What's out here?

ONESONES

L
e

L
e



  

RE ∪ co-RE is Not Everything

● Using the same reasoning as the first day 
of lecture, we can show that there must 
be problems that are neither RE nor 
co-RE.

● There are more sets of strings than TMs.
● There are more sets of strings than twice 

the number of TMs.
● What do these languages look like?



  

An Extremely Hard Problem

● Recall: All regular languages are also RE.
● This means that some TMs accept regular languages 

and some TMs do not.

● Let REGULARTM be the language of all TM 
descriptions that accept regular languages:

REGULARTM = { ⟨M⟩ | ℒ(M) is regular }  

● Is REGULARTM ∈ R?  How about RE?  How about 
co-RE?



  

Building an Intuition

● If you were convinced that a TM had a 
regular language, how would you 
mechanically verify that?

● If you were convinced that a TM had a 
nonregular language, how would you 
mechanically verify that?

● Both of these seem difficult, if not 
impossible.  Chances are REGULARTM is 
neither RE nor co-RE.



  

REGULARTM ∉ RE

● It turns out that REGULARTM is 
unrecognizable, meaning that there is no 
computer program that can confirm that 
another TM's language is regular!

● To do this, we'll do a reduction from LD 
and prove that LD ≤M REGULARTM.



  

LD ≤M REGULARTM

● We want to find a computable function f such 
that

   ⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ REGULARTM.

● We need to choose N such that f(⟨M⟩) = ⟨N⟩ for 
some TM N. Then

    ⟨M⟩ ∈ LD     iff     f(⟨M⟩) ∈ REGULARTM     

⟨M⟩ ∈ LD     iff     ⟨N⟩ ∈ REGULARTM

⟨M⟩ ∉ ℒ(M)     iff     ℒ(N) is regular.          
● Question: How do we pick N?



  

LD ≤M REGULARTM

● We want to construct some N out of M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ N) is not regular.
● If ⟨M⟩ ∉ (ℒ M), then (ℒ N) is regular.

● One option: choose two languages, one regular 
and one nonregular, then construct N so its 
language switches from regular to nonregular 
based on whether ⟨M⟩ ∉ (ℒ M).
● If ⟨M⟩ ∈ (ℒ M), then (ℒ N) = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ N) = Ø



  

The Reduction

● We want to build N from M such that
● If ⟨M⟩ ∈ (ℒ M), then (ℒ N) = { 0n1n | n ∈ ℕ }
● If ⟨M⟩ ∉ (ℒ M), then (ℒ N) = Ø

● Here is one way to do this:

    N = “On input x:

                If x does not have the form 0n1n, reject.

                Run M on ⟨M⟩.

                If M accepts, accept x.

                If M rejects, reject x.”



  

Theorem: LD ≤M REGULARTM.
Proof: We exhibit a mapping reduction from LD to REGULARTM. 

For any TM M, let f(⟨M⟩) = ⟨N⟩, where N is defined in terms of
M as follows:

 

N = “On input x:
If x does not have the form 0n1n, then N rejects x.
Run M on ⟨M⟩.
If M accepts ⟨M⟩, then N accepts x.
If M rejects ⟨M⟩, then N rejects x.”

 

We claim f is computable and omit the details from this proof.
We further claim that ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM.  To
see this, note that f(⟨M⟩) = ⟨N⟩ ∈ REGULARTM iff (ℒ N) is
regular.  We claim that (ℒ N) is regular iff ⟨M⟩ ∉ (ℒ M).  To see
this, note that if ⟨M⟩ ∉ (ℒ M), then N never accepts any strings.
Thus (ℒ N) = Ø, which is regular.  Otherwise, if ⟨M⟩ ∈ (ℒ M),
then N accepts all strings of the form 0n1n, so we have that
ℒ(N) = { 0n1n | n ∈ ℕ }, which is not regular.  Finally,
⟨M⟩ ∉ (⟨ℒ M⟩) iff ⟨M⟩ ∈ LD. Thus ⟨M⟩ ∈ LD iff f(⟨M⟩) ∈ REGULARTM, 
so f is a mapping reduction from LD to REGULARTM.  Therefore,
LD ≤M REGULARTM. ■


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

