CS 341: Chapter 4 4-2
Chapter 4
Decidability

CS 341: Foundations of CS Il

Contents

e Decidable Languages
e TM Acceptance Problem is Undecidable

Marvin K. Nakayama e Countable and Uncountable Sets
Computer Science Department

New Jersey Institute of Technology
Newark, NJ 07102

e Some languages are not Turing-recognizable

CS 341: Chapter 4 4-3 CS 341: Chapter 4 4-4
Decidable Languages Describing TM Programs
e We now tackle the question: e Three Levels of Describing Algorithms:
What can and can't computers do? » Formal (state diagrams, CFGs, etc.)

e We consider the questions: = Implementation (pseudo-code)

= High-level (coherent and clear English
Which languages are 1. Turing-decidable igh-level (coherent and clear English)

2. Turing-recognizable e Describing input/output format:

3. neither? . :
= TMs allow only strings over some alphabet as input.
e Assuming the Church-Turing thesis, w If our input X and Y are of another form (graph, TM, polynomial),
= these are fundamental properties of languages and algorithms. a then we use (X,Y’) to denote some kind of encoding

as a string over some alphabet.
e Why study decidability?

. e e |
= Certain problems are unsolvable by computers. e When defining TM, make sure to specify its input!

= You should be able to recognize these.

CS 341: Chapter 4 4-5
Acceptance Problem for DFAs
Decision problem: Does a given DFA B accept a given string w?

e Instance is a particular pair (B, w) of a DFA B and a string w.

e Universe comprises every possible instance
Q= {(B,w)| BisaDFA and w is a string }
e Language comprises all YES instances

Apra = { (B, w) | B is a DFA that accepts string w } C Q2

020

DFA D, DFA D,
a, b
—>
b

e (D1,abb) € Apga and (D5, e) € Apga are YES instances.
o (D1,e) & Apra and (Do, aab) ¢ Apga are NO instances.

CS 341: Chapter 4 4-6
Acceptance Problem for DFAs is Decidable

Apra = { (B, w) | B is a DFA that accepts string w }.

Theorem 4.1
Apra is a decidable language.

Remarks:

e Recall universe for Acceptance Problem for DFAs

Q = {(B,w)| BisaDFA and w is a string }.

e To prove Appa is decidable, need to show 3 TM M that decides Apga.
e For TM M to decide Apra, TM must

= take any instance (B, w) € 2 as input

» halt and accept if (B, w) € Apga

» halt and reject if (B, w) &€ Apea

CS 341: Chapter 4 4-7

Proof: TM M that Decides Apga
= "On input (B, w) € 2, where
e B=(Q,%,6,qp,F) isa DFA

o w = wiwyp---wp € ¥ is input string to process on B.

0. Check if (B, w) is ‘proper’ encoding. If not, reject.
1. Simulate B on w with the help of two pointers, ¢ and i:
® g € Q points to the current state of DFA B.
s Initially, ¢ = qq, the start state of B.

eic {1,2,...,|w|} points to the current position in string w.
e While 7 increases from 1 to

» ¢ = 6(q,w;); i.e., transition function & determines next state
from current state g and input symbol w;.

2. If B ends in state q € F', then M accepts; otherwise, reject.”

CS 341: Chapter 4 4-8
Acceptance Problem for NFAs is Decidable
Decision problem: Does a given NFA B accept a given string w?
Anra = { (B, w) | B is NFA that accepts string w }
C{(B,w)| Bis NFA, wis string} = Q

Theorem 4.2
Anra is a decidable language.

Proof. TM: “On input (B,w) €

e B=(Q,%x,9,q0, F) is NFA

e w € > * is input string for B.

0. If input (B, w) is not proper encoding of NFA B and string w, reject.

1. Use algorithm in Theorem 1.39 to transform NFA B into an equivalent
DFA C.

2. Run TM decider M for Apga (Theorem 4.1) on input (C, w).
3. If M accepts (C, w), accept; otherwise, reject.”

CS 341: Chapter 4 4-9
Acceptance Problem for Regular Expressions is Decidable

Decision problem: Does a reg exp R generate a given string w?

Arex = { (R, w) | R is regular expression that generates string w }
C {(R,w) | R is regular expression and w is string } = <.

Example: For regular expressions R1 = a*b and Ry = ba™*b*,
(R1,aab) € Apex, (R1,ba) € Agex, (R2,aab) & Agex.

Theorem 4.3
ARgex is a decidable language.

Proof. On input (R, w) € 2
0. Check if (R, w) is a proper encoding of a regular expression and string.
If not, reject.

1. Convert R into a DFA B using algorithms in Lemma 1.55 and
Theorem 1.39.

2. Run TM decider for Apga (Theorem 4.1) on input (B, w) and give
same output.

CS 341: Chapter 4 4-10

Emptiness Problem for DFAs

Decision problem: Does a DFA recognize the empty language?

Epea = {(B)| BisaDFAand L(B) =0}
C{(B)|BisaDFA} = Q.

Examples: DFA C DFA D

a,b a,b
—O-O —®O-®
a,b a,b

Note that <C> ¢ Epra and <D> € Epra.

Theorem 4.4
Epka is a decidable language.

Proof ldea:

e Check if any accept state is reachable from start state.

e If so, then reject; otherwise, accept.

CS 341: Chapter 4 4-11

Proof that Epga is Decidable
On input (B) € €2, where B = (Q, X, 4, qo, F') is a DFA:

0. If (B) is not a proper encoding of a DFA, reject.
1. Define S as set of states reachable from gg. Initially, S = {qo}.
2. Repeat |Q] times:

(a) If S has an element from F, then reject.

(b) Otherwise, add to S the elements that can be reached from S using
transition function 4, i.e.,

olf 3¢ € Sand £ e > with 6(g;,£) = gj, then add g; to S.

3.If SN F = 0, then accept;
otherwise, reject.

Remark: TM just tests whether any accepting state is reachable from
start state (transitive closure).

a,b a,b
@@
a,b

CS 341: Chapter 4 4-12

DFA Equivalence Problem is Decidable

Decision problem: Are 2 given DFAs equivalent?

EQpen = {(A,B)| A and B are DFAs and L(A) = L(B) }
C{(A,B)| A and B are DFAs} = Q.

Example:

DFA A; DFA By

a,b
®
a,b

DFAs A1 and B1 don't recognize same language, so (A1, B1) € EQpga-

Theorem 4.5
EQpg, is a decidable language.

CS 341: Chapter 4 4-13

EQpea = {(A,B)| A and B are DFAs and L(A) = L(B) }

e Given DFAs A and B, construct new DFA C' such that C accepts any
string accepted by A or B but not both:

L(C) = [L(A) n L(B)] U [L(A) n L(B)]
e L(C) is the symmetric difference of L(A) and L(B).

L(A) L(B)
@
e Note that L(A) = L(B) if and only if L(C) = 0.

e Construct DFA C' using algorithms for DFA complements (slide 1-15),
intersections (slide 1-34), and unions (Thm 1.25).

e DFA C can be constructed with one big TM.

CS 341: Chapter 4 4-14
Proof that EQpga is Decidable
On input (A, B) € 2, where A and B are DFAs:
0. Check if (A, B) is a proper encoding of 2 DFAs. If not, reject.

1. Construct DFA C such that
L(C) = [L(A) N L(B)| U [L(A) N L(B)]
using algorithms for DFA complements (slide 1-15), intersections (slide
1-34), and unions (Thm 1.25).
2. Run TM decider for Epga (Theorem 4.4) on input (C').

3.1f (C) € Eppa, accept;
If (C) & Epga, reject.

CS 341: Chapter 4 4-15

Acceptance, Emptiness and Equivalence Problems for CFGs

Acre = { (G, w) | G is a CFG that generates string w },
FEcre = {<G> | G is a CFG with L(G) = @},
EQcr¢c = {(G,H)| G and H are CFGs with L(G) = L(H) }.
Example:

e Consider CFGs
= G1 with rules S — aSbh | e, so L(G1) = {akbF| k> 0},
s G5 with rules S — aSbh, so L(G>) = 0.

e (G1,aabb) € Acpg and (G1, aab) & Acre.

e (G1) &€ Ecrg and (Gp) € Ecre.

e (G1,G2) € EQcre.

CS 341: Chapter 4 4-16
Acceptance Problem for CFGs is Decidable

e Decision problem: Does a CFG G generate a string w?

Acre = { (G,w) | G is a CFG that generates string w }
C{(G,w)| GisaCFGand w a string} = Q.

e For any specific pair (G, w) € Q2 of a CFG G and string w,
» (G, w) € Acpg if G generates w, i.e., w € L(G).
» (G,w) & Acpg if G doesn't generate w, i.e., w & L(G).
Theorem 4.7
Acrg is a decidable language.
Proof Idea: (Bad approach)

® Design a TM M that takes input (G, w), and enumerates all
derivations using CFG G to see if any generates w.

e Problem: M might recognize Acg but does not decide it. Why?
o If w g L(G) and |L(G)| = oo, then TM M never halts.

CS 341: Chapter 4 4-17

Better Approach: Use Chomsky Normal Form
e Recall: A context-free grammar G = (V,X, R, S) is in
Chomsky normal form if each rule is of the form
A—-BC o A—zxz o S—c¢

m variable A €V
a variables B,C € V — {S}
s terminal x € 2.

e Every CFG can be converted into Chomsky normal form (Theorem 2.9).

e CFG G in Chomsky normal form is easier to analyze.

= Can show that for any string w € L(G) with w # ¢,
derivation S %> w takes exactly 2|w| — 1 steps.

» ¢ € L(G) iff G includes rule S — €.

CS 341: Chapter 4 4-18

Proof that Acgg is Decidable

On input (G, w) € €2, where G is a CFG and w is a string,

0. Check if (G, w) is proper encoding of CFG and string; if not, reject.
1. Convert G into equivalent CFG G’ in Chomsky normal form.

2.If w =g, check if S — ¢ is a rule of G’.
If so, accept; otherwise, reject.

3. If w # ¢, list all derivations with 2n — 1 steps, where n = |w]|.

4. If any generates w, accept;
otherwise, reject.

Remarks:

e # derivations with 2n — 1 steps is finite, so TM is a decider.

e We consider a more efficient algorithm in Chapter 7.

CS 341: Chapter 4 4-19

Emptiness Problem for CFGs is Decidable
Decision problem: Is a CFG's language empty?
Ecre = {(G)| Gisa CFG with L(G) =0}
C{(G)|GisaCFG} = Q
Theorem 4.8
Ecrg is decidable.

Proof. On input (G) € €2, where G is a CFG,

0. Check if (G) is a proper encoding of a CFG G = (V, X, R, S);
if not, reject.

1. Define set T C V U X such that u € T iff u = w for some w € ~*.
Initially, 7" = 3, and iteratively add to T

2. Repeat |V/| times:
e Check each rule B — X1 --- X} in R.
olf BZT and each X; € T, then add B to T.

3.1f S €T, then reject; otherwise, accept.

CS 341: Chapter 4 4-20

Are Two CFGs Equivalent?

e Decision problem: Are two CFGs equivalent?
EQcr¢ = {(G,H)| G,H are CFGs and L(G) = L(H) }
C{(G,H)| G,H are CFGs } = Q.

e For DFAs we could use the emptiness decision procedure to solve the
equality problem.

» Try to construct CFG C from CFGs G and H such that
L(C) = [L(G) n L(H)| u [L(G) N L(H)]
and check if L(C') is empty using TM decider for Ecrg.
e We can't define CFG C for symmetric difference. Why?
» Class of CFLs not closed under complementation nor intersection.
e Fact: FQcrc is not a decidable language.

= We'll prove this later (HW 9).

CS 341: Chapter 4 4-21
CFLs are Decidable

Theorem 4.9
Every CFL L is a decidable language.

Bad Idea for Proof:
e Convert PDA for L directly into a TM.

» Can do this by using TM tape to simulate PDA stack.
e Nondeterministic PDA yields nondeterministic TM (NTM).
e NTM can be converted into deterministic TM (DTM).
e Problem:

= Some branch of PDA might run forever.
= Some branch of NTM might run forever.
= Corresponding DTM recognizes L,
A but does not decide L since it may not halt on every input.

CS 341: Chapter 4 4-22
Proof that Every CFL L is Decidable

e Let L be a CFL with alphabet -, so L C >~*

» G’ be a CFG for language L
s S be a TM from Theorem 4.7 that decides

Acre = { (G,w) | G is a CFG that generates string w }

e Construct TM My for language L having CFG G’ as follows:
Mg = "On input w € %
1. Run TM decider S on input (G’, w).
2. 1f S accepts, accept;

otherwise, reject.”
e How do TMs S and My differ?

» TM S has input (G, w).
» TM My has input w for fixed G'.

CS 341: Chapter 4 4-23
Hierarchy of Languages (so far)

Examples

All languages 77

Turing-recognizable 77

TM, k-tape TM, NTM, enumerator, ...

Decidable

Decider (deterministic, nondet, k-tape, ...

{or1m2n | n >0}

Context-free

nin
CFG, PDA {om*fn =0}

Regular (OuU1)*
DFA, NFA, Reg Exp

CS 341: Chapter 4 4-24
The Universal TM U

e Is one TM capable of simulating all other TMs?

e Given an encoding (M, w) of a TM M and input w,

= can we simulate M on w?

o We can do this via a universal TM U:

U = "On input (M, w), where M is a TM and w is a string:
1. Simulate M on input w.

2. If M ever enters its accept state, accept;
if M ever enters its reject state, reject.”

e Can think of U as an emulator.

CS 341: Chapter 4

4-25
Acceptance Problem for TMs is Turing-Recognizable

e Decision problem: Does a given TM M accept a given string w?

e Instance: (M, w), where M is TM, w is a string.

e Universe: Q = { (M, w)| M is TM and w is string }.

e Language:
Atvm = { (M, w) | M is TM that accepts string w } C .

e For a specific pair (M, w) € €2 of TM M and string w,
» (M,w) € Aty if M accepts w
n (M, w) & Aty if M does not accept w.

e Universal TM U

= U recognizes A1y, so Aty is Turing-recognizable.
= U does not decide Aqy.
a If M loops on w, then U loops on (M, w).

e But can we also decide A1y ?

s We will see later that Aty is undecidable.

CS 341: Chapter 4

Unsolvable Problems

4-26

e Computers (and computation) are limited in a very fundamental way.

e Common, every-day problems are unsolvable (i.e., undecidable)

» Does a program sort an array of integers?

= Both program and specification are precise mathematical objects.

= One might think that it is then possible to develop an algorithm that

can determine if a program matches its specification.

= However, this is impossible.

e To show this, we need to introduce some new ideas.

CS 341: Chapter 4

4-27
Mappings and Functions
e Consider fcn f : A — B mapping objects in one set A to another B.

e Definition: f is one-to-one (aka injective) if every x € A has a
unique image f(x):

o If f(z) = f(y), then x = .
= Equivalently, if z # y, then f(x) #= f(y). — " .

e Definition: f is onto (aka surjective) if every z € B is “hit" by f:

n If z € B, then there is an £ € A with
f(z) = 2. o« ————F°

e Definition: f is a correspondence (aka bijection)
if it both one-to-one and onto.

A o—_| f | »@®
./><\.

= Inverse fcn f~1: B — A then exists.

= A way to pair elements from A
with elements from B.

CS 341: Chapter 4
Example: f: R — R with f(x) =¢e%is
® one-to-one since x 7 y implies e* % €Y.

e not onto since e > 0 for all x € R.

Example: f: R — R with f(z) = 22 is
e not one-to-one since 32 = (—=3)2 = 9.

e not onto since 2 > 0 for all z € R.

Example: f: R — R with f(z) =3 is

e one-to-one since x 7 y implies 23 # y3.

1/3

e onto since for any z € R, letting x = 2/ yields

flz) = (Y33 =2
e Thus, f is a correspondence between A =R and B = R.

4-28

CS 341: Chapter 4 4-29

Cardinality
e Set T has |T'| = k iff 3 correspondence between {1,2,...,k} and T,

CS 341: Chapter 4 4-30
Countable Sets

oelet N ={1,2,3,...} be the set of natural numbers.

in which case {1,2,...,k} and T"are of the same size. e Set T is infinite if there exists a one-to-one function f : N — T.
« Ex: |T| = 3. S é:>f<::: I s “The set T is at least as big as the set V"
e o e Set T' is countable if it is finite or has the same size as .
e If 3 one-to-one mapping from set S to set T’ , : .
: . : ' Can list out (i.e., enumerate) all elements in a countable set
then T is at least as big as S, i.e., |T| > |S]. - st ot (I_ numer) ments in i
= each element is eventually listed.
S 18l f T
« Ex: [T > 3. 20—><:: o
3o — Fact: N ={1,2,3,...} and £ = {2,4,6,...} have same size.
e Defn: Two sets .S and T, possibly infinite, are of the same size if Proof. Define correspondence between N and & by function f(¢) = 2i.
there is a correspondence between them.
o If 3 one-to-one fen from S to T but 7 correspondence from S to T, Remark: Set T and a proper subset of T' can have the same size!
then T is strictly bigger than S.
CS 341: Chapter 4 4-31 CS 341: Chapter 4 4-32

Set of Rational Numbers is Countable
Fact: The set of rational numbers
m
Q= { — ‘ m,n N}
n
is countable.

Proof.

e Write out elements in Q as an infinite 2-dimensional array:
1/1 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

o If we try to
n first list all elements in first row,
= then list all elements in second row,
= and so on,

then we will never get to the second row because the first row is
infinitely long.

e Instead,
= enumerate elements along Southwest to Northeast diagonals,

= skip duplicates.

CS 341: Chapter 4 4-33 CS 341: Chapter 4 4-34
More Countable Sets
Examples: 3 correspondence between N = {1,2,3,...} and each of
e zZ={...,—2,-1,0,1,2,...}
a1 o N2 ={(i,j)|i,jEN}
e {a}"
e > * for any alphabet 3; e.g., X = {a, b}.
2/5
= Simply enumerate strings in >* in string order.
3/5 N 1 2 3 4 5 6 7 .
Z | 0 | +1] -1 42| -2 | 43| -3 | ... |
NZ (1,1) (2,1) (1,2)[(3,1)[(2,2) (1,3)] (4,1)
{a}* ‘ € a ‘ aa | aaa | aaaa |aaaaa|aaaaaq
{a,b}* € a b aa ab ba bb
So is every infinite set countable?
CS 341: Chapter 4 4-35 CS 341: Chapter 4 4-36

Uncountable Sets

Definition: A set is uncountable if it is not countable.
Remark: Uncountable sets are (much) larger than countable sets.

Definition: A real number is a number with a (possibly infinite)
decimal representation.

e = 3.1415926...
o2 =1.4142136...
e 2 =12.0000...

Theorem 4.17
The set R of all real numbers is uncountable.

Set R of All Real Numbers is Uncountable

Proof.

e Suppose that there is a correspondence between N and R:

n f(n)

1| 3.141509...
2| 0.55555...
3/ 40.00000...
4/ 15.20361...

e Since correspondence exists, enumerated list is supposed to contain
every real number.

e Each number is written as an infinite decimal expansion.

e We now construct a number x between O and 1 that is not in the list
using Cantor's diagonalization method

CS 341: Chapter 4 4-37
Diagonalization Method
elet x =0.dydodsz ..., where

= dp, is nth digit after decimal point in decimal expansion of x
» dp, differs from the nth digit in the nth number in the list.

n f(n)

1| 3.141509...
2/ 0.55555...
3/ 40.00000...
4/ 15.20361...

e For example, can take x = 0.2617

e Vn, x differs from nth number f(n) in the list in at least position n,
m so x is not in the list,
= contradiction since list is supposed to contain all of R, including x.

e Thus, A correspondence f : N'— R, so R is uncountable.

CS 341: Chapter 4 4-38
Set of All TMs is Countable
Fact: If S C T and T is countable, then S is countable.

Proof. In enumeration of T, skip elements in T — S to enumerate S.

Fact: For any (finite) alphabet W, the set W* is countable.

Proof. Enumerate strings in string order.

Fact: The set of all TMs is countable.
Proof.
e Every TM has a finite description.
» Can describe TM M using encoding (M)
= Encoding is a finite string of symbols over some alphabet W.

e So just enumerate all strings over W
= omit any that are not legal TM encodings.
e Since W* is countable,

= there are only a countable number of different TMs.

CS 341: Chapter 4 4-39
Set of All Languages is Uncountable

Fact: The set B of all infinite binary sequences is uncountable.

Proof. Use diagonalization argument as in proof that R is uncountable.

Fact: The set £ of all languages over alphabet 3 is uncountable.
Proof.

e Idea: show 3 correspondence x between L and B,
so L has same size as uncountable set B.

e Language's characteristic sequence defined by correspondence
xX:L—>B
= Write out elements in 3* in string order: sq, sp, s3,

» Each language A € L has a unique sequence x(A) € B.
s The nth bit of x(A) is 1 if and only if s, € A

CS 341: Chapter 4 4-40
e Recall: Each language A € L has a unique sequence x(A) € B
» nth bit of x(A) is 1 if and only if 55, € A.

e Example: For © = {0, 1},

>* = { e 0, 1, 00, 01, 10, 11, 000, ...}
A = { 0, 00, 01, 000, ... }
x(A) = o0 1 o0 1 1 0 0 1

e The mapping x : £ — B is a correspondence because it is

= one-to-one: different languages A7 and A, differ for at least one
string s;, so the ith bits of x(Aq1) and x(A5) differ;

» onto: for each sequence b € B, 3 language A for which x(A) = b.
e Thus, £ is same size as uncountable set 13,

= so L is also uncountable.

CS 341: Chapter 4 4-41

Some Languages are not Turing-Recognizable

e Each TM recognizes some language.
e Set of all TMs is countable.
e Set of all languages is uncountable.

e Since uncountable sets are larger than countable ones,

= J more languages than there are TMs that can recognize them.

Corollary 4.18

Some languages are not Turing-recognizable.

e What kind of languages are not Turing-recognizable?

s We'll see some later ...

CS 341: Chapter 4 4-42

Revisit Acceptance Problem for TMs

e Decision problem: Does a TM M accept string w?

Atv = { (M, w) | M is a TM that accepts string w }
C{{(M,w)| MisaTM and wis a string } = Q

e Universe €2 of instances

= contains all possible pairs of TM M and string w
= not just a specific instance.

e For a specific TM M and string w,

w if M accepts w, then (M, w) € Aty is a YES instance

w if M doesn't accept w (rejects or loops), then (M, w) € Atm is a
NO instance.

Theorem 4.11
Atwm is undecidable.

CS 341: Chapter 4 4-43

Outline of Proof by Contradiction

e Suppose Ay is decided by some TM H, with input (M, w) € Q.

< accept, if (M, w) € Atm

M,w) — H
(M, w) reject, if (M, w) & Atm

e Use H as subroutine to define another TM D, with input (M).

accept accept
(M) (M) — <

reject

e What happens when we run D with input (D) 7
» D accepts (D) iff D doesn't accept (D), which is impossible.

CS 341: Chapter 4 4-44
Proof by Contradiction that Aty is Undecidable

e Suppose there exists a TM H that decides Aty.

s TM H takes input (M, w) € 2, where M isa TM and w a string.
» H accepts (M, w) € Arw; i.e., if M accepts w.
» H rejects (M, w) & Atw; i.e., if M does not accept w.
e Consider language L = { (M) | M is TM that doesn't accept (M) }.
e Using TM H as subroutine, we can construct TM D that decides L:

D = "“On input (M), where M is a TM:
1. Run H on input (M, (M)).
2. If H accepts, reject. If H rejects, accept.”

e What happens when we run D with input (D) 7

» Stage 1 of D runs H on input (D, (D)).
» D accepts (D) iff D doesn't accept (D), which is impossible.

e So TM H must not exist, i.e., Aty is undecidable.

CS 341: Chapter 4 4-45

Another View of Proof

Remark: The proof implicitly used diagonalization ...

e Since the set of all TMs is countable, we can enumerate them:

M17 M27 M37 M47

e Construct table of acceptance behavior of TM M; on input (M;):

(M1) (Mz) (Mz) (Ma)

My | accept accept
Mo | accept accept accept accept
M3

My | accept accept

= Blank entries are reject or loop.

CS 341: Chapter 4 4-46
Another View of Proof

e Another table

= entry (4, 7) is value of “acceptance function” H on input
(M, (Mj)):

(My) (M) (Ms) (M)
M| accept reject accept reject
Mo | accept accept accept accept
M3 | reject reject reject reject
Mgy | accept accept reject reject

CS 341: Chapter 4 4-47
Another View of Proof

e Diagonal entries swapped for output of D on (M;).
e D is a TM, so it must appear in the enumeration M1, Mo, M3, ...

e Contradiction occurs when evaluating D on (D):

(My) (M) (Msz) (Ma) (D)
My accept reject accept reject accept
Mo accept accept accept accept accept
M3 reject reject reject reject reject
My accept accept reject reject accept
D ‘ reject reject accept accept ?

CS 341: Chapter 4 4-48
Another View of the Problem
e “Self-referential paradox”
= occurs when we force the TM D to disagree with itself.
e D knows what it is going to do on input (D) by H,
= but then D does the opposite instead.
e You cannot know for sure what you will do in the future.

= If you could, then you could change your actions and create a
paradox.

e The diagonalization method implements the self-reference paradox in a
mathematical way.

e In logic this approach often used to prove that certain things are
impossible.

e Kurt Godel gave a mathematical equivalent of the statement
“This sentence is not true” or “l am lying.”

CS 341: Chapter 4 4-49 CS 341: Chapter 4 4-50
Co-Turing-Recognizable Languages Decidable <= Turing- and co-Turing-recognizable
Amv = {(M,w) | M is a TM that accepts string w }
Theorem 4.22
e Aty is not Turing-decidable, but is Turing-recognizable. A language is decidable if and only if it is both
= Use universal TM U to simulate TM M on string w. e Turing-recognizable and
a If M accepts w, then U accepts (M, w) € Atw. e co-Turing-recognizable.
a If M rejects w, then U rejects (M, w) &€ Atm.
a If M loops on w, then U loops on (M, w) & Atm.
Turing-recognizable
e What about a language that is not Turing-recognizable?
e Recall that complement of language A over alphabet X is / Decidable /
A=3"—- A
co- Turing-recognizable
Definition: Language A is co-Turing-recognizable if its
complement A is Turing-recognizable.
CS 341: Chapter 4 4-51 CS 341: Chapter 4 4-52

Decidable = TM-recognizable and co-TM-recognizable

e Suppose language A is decidable.
e Then A is Turing-recognizable.

e Also, since A is decidable, 3 TM M that
= always halts
= correctly accepts strings w € A
= correctly rejects strings w € A
e Define TM M’ same as M except swap accept and reject states.
s M’ rejects when M accepts,
s M’ accepts when M rejects.
e TM M’ always halts since M always halts, so M’ decides A.

s Thus, A is also Turing-recognizable
= i.e.,, A is co-Turing-recognizable.

TM-recognizable and co-TM-recognizable = Decidable

e Suppose A is both TM-recognizable and co-TM-recognizable.

e Then there exists

= TM M recognizing A

» TM M’ recognizing A.
e For any string w € X*, either w € A or w & A (but not both),

so either M or M’ accepts w (but not both).
e Construct another TM D from M and M’ as follows:

D = "On input w € *:
1. Alternate running one step on each of M and M’
both on input w. Wait for M or M’ to accept.

2. If M accepts, accept,;
if M’ accepts, reject.”

e Note that D decides A, so A is decidable.

CS 341: Chapter 4 4-53

Atwm is not Turing-recognizable
Remarks:

o Aty = { (M,w) | M is a TM that accepts string w }
is Turing-recognizable (by UTM) but not decidable (Thm 4.11).

e Theorem 4.22: Decidable < Turing-recog and co-Turing-recognizable.
o Aty = { (M, w) | M is a TM that does not accept string w }.

Corollary 4.23
Artwm is not Turing-recognizable.

Proof.

o If A1y were Turing-recognizable, then Aty would be both
Turing-recognizable and co-Turing-recognizable.

e But then Theorem 4.22 would imply Aty is decidable,
which is a contradiction.

CS 341: Chapter 4 4-54

Some Other Non-Turing-Recognizable Languages

We'll later show the following languages are also not Turing-recognizable:

o By ={(M)| Misa TM with L(M) =0},
which is co-Turing-recognizable.

e EQtv = {(M,N)| M and N are TMs with L(M) = L(N) },
which is not even co-Turing-recognizable.

EQtm

Turing-recognizable
(Decndablej
co-Turing-recognizable

CS 341: Chapter 4 4-55

Hierarchy of Languages

Examples
All languages Atm
Turing-recognizable Atm

TM, k-tape TM, NTM, enumerator, ...

Decidable {0™1"2" | n >0}

Decider (deterministic, nondet, k-tape, ...

Context-free

nin
CFG, PDA {0"1"n =0}

Regular (OQuU1)*
DFA, NFA, Reg Exp

CS 341: Chapter 4 4-56
Summary of Chapter 4
e Decidable Ianguages: ADFAv ANFA: AREX, EDFAv EQDFAv Acpg, Ecpg,
CFL
e Universal TM (UTM): can simulate any given TM on given string

e Aty (acceptance problem for TM) is Turing-recognizable but
undecidable.

e Countable and uncountable sets
= Diagonalization method used to prove certain sets are uncountable
= Set of all TMs is countable

= Set of all languages is uncountable

= So some languages not Turing-recognizable, e.g., Aty.

e Language is co-Turing-recognizable if its complement is
Turing-recognizable.

o Decidable <= Turing-recognizable and co-Turing-recognizable.

