	<i>CS 341: Chapter 4</i> 4-2
CS 341: Foundations of CS II	Chapter 4 Decidability
Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102	 Contents Decidable Languages TM Acceptance Problem is Undecidable Countable and Uncountable Sets Some languages are not Turing-recognizable
CS 341: Chapter 4 4-3 Decidable Languages	CS 341: Chapter 4 4-4 Describing TM Programs
• We now tackle the question:	• Three Levels of Describing Algorithms:
What can and can't computers do? • We consider the questions: Which languages are 1. Turing-decidable 2. Turing-recognizable 3. neither?	 Formal (state diagrams, CFGs, etc.) Implementation (pseudo-code) High-level (coherent and clear English) Describing input/output format: TMs allow only strings over some alphabet as input.
 Assuming the Church-Turing thesis, 	If our input X and Y are of another form (graph, TM, polynomial),
 these are fundamental properties of languages and algorithms. Why study decidability? Certain problems are unsolvable by computers. You should be able to recognize these. 	 ▲ then we use (X, Y) to denote some kind of encoding as a string over some alphabet. ● When defining TM, make sure to specify its input!

4-5

Acceptance Problem for DFAs is Decidable

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts string } w \}.$

Theorem 4.1

 $A_{\rm DFA}$ is a decidable language.

Remarks:

CS 341: Chapter 4

• Recall universe for Acceptance Problem for DFAs

 $\Omega = \{ \langle B, w \rangle \mid B \text{ is a DFA and } w \text{ is a string} \}.$

- To prove A_{DFA} is decidable, need to show \exists TM M that decides A_{DFA} .
- \bullet For TM M to decide $A_{\rm DFA},$ TM must
 - ${\scriptstyle \bullet }$ take any instance $\langle B,w\rangle \in \Omega$ as input
 - halt and **accept** if $\langle B, w \rangle \in A_{\mathsf{DFA}}$
 - halt and **reject** if $\langle B, w \rangle \not\in A_{\mathsf{DFA}}$
- CS 341: Chapter 4

4-8

Acceptance Problem for NFAs is Decidable

Decision problem: Does a given NFA B accept a given string w?

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle \mid B \text{ is NFA that accepts string } w \} \\ \subseteq \{ \langle B, w \rangle \mid B \text{ is NFA, } w \text{ is string } \} \equiv \Omega$

Theorem 4.2

 $A_{\rm NFA}$ is a decidable language.

Proof. TM: "On input $\langle B, w \rangle \in \Omega$

- $B = (Q, \Sigma, \delta, q_0, F)$ is NFA
- $w \in \Sigma^*$ is input string for B.
- 0. If input $\langle B,w
 angle$ is not proper encoding of NFA B and string w, reject.
- 1. Use algorithm in Theorem 1.39 to transform NFA B into an equivalent DFA C.
- 2. Run TM decider M for A_{DFA} (Theorem 4.1) on input $\langle C, w \rangle$.
- 3. If M accepts $\langle C, w \rangle$, accept; otherwise, reject."

Acceptance Problem for DFAs
Decision problem: Does a given DFA
$$B$$
 accept a given string w ?

- **Instance** is a particular pair $\langle B, w \rangle$ of a DFA B and a string w.
- Universe comprises every possible instance

 $\Omega = \{ \langle B, w \rangle \mid B \text{ is a DFA and } w \text{ is a string} \}$

• Language comprises all YES instances

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that } \mathbf{accepts} \text{ string } w \} \subseteq \Omega$

⟨D₁, abb⟩ ∈ A_{DFA} and ⟨D₂, ε⟩ ∈ A_{DFA} are YES instances.
 ⟨D₁, ε⟩ ∉ A_{DFA} and ⟨D₂, aab⟩ ∉ A_{DFA} are NO instances.

CS 341: Chapter 4

Proof: TM M that Decides A_{DFA}

M = "On input $\langle B, w \rangle \in \Omega$, where

- $B = (Q, \Sigma, \delta, q_0, F)$ is a DFA
- $w = w_1 w_2 \cdots w_n \in \Sigma^*$ is input string to process on B.
- 0. Check if $\langle B,w\rangle$ is 'proper' encoding. If not, reject.
- 1. Simulate $B \mbox{ on } w$ with the help of two pointers, $q \mbox{ and } i :$
 - $q \in Q$ points to the current state of DFA B.
 - Initially, $q = q_0$, the start state of B.
 - $i \in \{1, 2, \dots, |w|\}$ points to the current position in string w.
 - \bullet While i increases from 1 to |w|,
 - $q = \delta(q, w_i)$; i.e., transition function δ determines next state from current state q and input symbol w_i .
- 2. If B ends in state $q \in F$, then M accepts; otherwise, $\mathit{reject."}$

4-7

<i>CS 341: Chapter 4</i> 4-9	<i>CS 341: Chapter 4</i> 4-10
Acceptance Problem for Regular Expressions is Decidable	Emptiness Problem for DFAs
Decision problem: Does a reg exp R generate a given string w ? $A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is regular expression that generates string } w \}$ $\subseteq \{ \langle R, w \rangle \mid R \text{ is regular expression and } w \text{ is string} \} \equiv \Omega.$	Decision problem: Does a DFA recognize the empty language? $E_{DFA} = \{ \langle B \rangle B \text{ is a DFA and } L(B) = \emptyset \}$ $\subseteq \{ \langle B \rangle B \text{ is a DFA} \} \equiv \Omega.$
 Example: For regular expressions R₁ = a*b and R₂ = ba*b*, ⟨R₁, aab⟩ ∈ A_{REX}, ⟨R₁, ba⟩ ∉ A_{REX}, ⟨R₂, aab⟩ ∉ A_{REX}. Theorem 4.3 A_{REX} is a decidable language. Proof. On input ⟨R, w⟩ ∈ Ω: 0. Check if ⟨R, w⟩ is a proper encoding of a regular expression and string. If not, reject. 1. Convert R into a DFA B using algorithms in Lemma 1.55 and Theorem 1.39. 2. Run TM decider for A_{DFA} (Theorem 4.1) on input ⟨B, w⟩ and give same output. 	Examples: DFA C a, b q_0 a, b q_1 a, b q_2 a, b q_2 a, b q_1 a, b q_2 a, b q_1 a, b q_2 a, b a, b a, b a, b a, b a, b a, b a, b a, ccept. a, ccept.
<i>CS 341: Chapter 4</i> 4-11	<i>CS 341: Chapter 4</i> 4-12
Proof that E_{DFA} is Decidable	DFA Equivalence Problem is Decidable
On input $\langle B angle \in \Omega$, where $B = (Q, \Sigma, \delta, q_0, F)$ is a DFA:	Decision problem: Are 2 given DFAs equivalent?
 0. If ⟨B⟩ is not a proper encoding of a DFA, <i>reject</i>. 1. Define S as set of states reachable from q₀. Initially, S = {q₀}. 	$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ $\subseteq \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs} \} \equiv \Omega.$
2. Repeat $ Q $ times:	_ ·
 (a) If S has an element from F, then reject. (b) Otherwise, add to S the elements that can be reached from S using transition function δ, i.e., If ∃ q_i ∈ S and ℓ ∈ Σ with δ(q_i, ℓ) = q_j, then add q_j to S. 	Example: DFA A_1 DFA B_1 $\rightarrow q_0 \xrightarrow{a, b} q_1 \xrightarrow{a, b} q_2$ $\rightarrow q_0 \xrightarrow{a, b} q_1$ $a, b \xrightarrow{a, b} q_1$
(b) Otherwise, add to S the elements that can be reached from S using transition function δ , i.e.,	

Remark: TM just tests whether any accepting state is reachable from start state (transitive closure).

CS 341: Chapter 4

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

• Given DFAs A and B, construct new DFA C such that C accepts any string accepted by A or B but not both:

 $L(C) = \left[L(A) \cap \overline{L(B)} \right] \cup \left[\overline{L(A)} \cap L(B) \right]$

• L(C) is the symmetric difference of L(A) and L(B).

- Note that L(A) = L(B) if and only if $L(C) = \emptyset$.
- Construct DFA *C* using algorithms for DFA complements (slide 1-15), intersections (slide 1-34), and unions (Thm 1.25).

 \bullet DFA C can be constructed with one big TM.

CS 341: Chapter 4

4-15

Acceptance, Emptiness and Equivalence Problems for CFGs

$$\begin{split} A_{\mathsf{CFG}} &= \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}, \\ E_{\mathsf{CFG}} &= \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}, \\ EQ_{\mathsf{CFG}} &= \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs with } L(G) = L(H) \}. \end{split}$$

Example:

• Consider CFGs

- G_1 with rules $S \rightarrow aSb \mid \varepsilon$, so $L(G_1) = \{ a^k b^k \mid k \ge 0 \}$,
- G_2 with rules $S \to aSb$, so $L(G_2) = \emptyset$.
- $\langle G_1, aabb \rangle \in A_{\mathsf{CFG}} \text{ and } \langle G_1, aab \rangle \not\in A_{\mathsf{CFG}}.$
- $\langle G_1 \rangle \not\in E_{\mathsf{CFG}}$ and $\langle G_2 \rangle \in E_{\mathsf{CFG}}$.
- $\langle G_1, G_2 \rangle \not\in EQ_{\mathsf{CFG}}.$

CS 341: Chapter 4

4-13

Proof that EQ_{DFA} is Decidable

On input $\langle A, B \rangle \in \Omega$, where A and B are DFAs:

0. Check if $\langle A,B\rangle$ is a proper encoding of 2 DFAs. If not, $\mathit{reject}.$

1. Construct DFA ${\boldsymbol C}$ such that

 $L(C) = \left[L(A) \cap \overline{L(B)} \right] \cup \left[\overline{L(A)} \cap L(B) \right]$

using algorithms for DFA complements (slide 1-15), intersections (slide 1-34), and unions (Thm 1.25).

- 2. Run TM decider for E_{DFA} (Theorem 4.4) on input $\langle C \rangle$.
- 3. If $\langle C \rangle \in E_{\text{DFA}}$, accept; If $\langle C \rangle \notin E_{\text{DFA}}$, reject.

CS 341: Chapter 4

4-16

Acceptance Problem for CFGs is Decidable

• **Decision problem:** Does a CFG *G* generate a string *w*?

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \\ \subseteq \{ \langle G, w \rangle \mid G \text{ is a CFG and } w \text{ a string } \} \equiv \Omega.$

- For any specific pair $\langle G, w \rangle \in \Omega$ of a CFG G and string w,
 - $\langle G, w \rangle \in A_{\mathsf{CFG}}$ if G generates w, i.e., $w \in L(G)$.
 - $\langle G, w \rangle \notin A_{CFG}$ if G doesn't generate w, i.e., $w \notin L(G)$.

Theorem 4.7

 $A_{\rm CFG}$ is a decidable language.

Proof Idea: (Bad approach)

- Design a TM M that takes input $\langle G, w \rangle$, and enumerates all derivations using CFG G to see if any generates w.
- \bullet Problem: M might recognize $A_{\rm CFG}$ but does not decide it. Why?
 - If $w \notin L(G)$ and $|L(G)| = \infty$, then TM M never halts.

<i>CS 341: Chapter 4</i> 4-17	<i>CS 341: Chapter 4</i> 4-18		
Better Approach: Use Chomsky Normal Form	Proof that A _{CFG} is Decidable		
 Recall: A context-free grammar G = (V, Σ, R, S) is in Chomsky normal form if each rule is of the form A → BC or A → x or S → ε variable A ∈ V variables B, C ∈ V - {S} terminal x ∈ Σ. Every CFG can be converted into Chomsky normal form (Theorem 2.9). CFG G in Chomsky normal form is easier to analyze. Can show that for any string w ∈ L(G) with w ≠ ε, derivation S * w takes exactly 2 w - 1 steps. ε ∈ L(G) iff G includes rule S → ε. 	 On input ⟨G, w⟩ ∈ Ω, where G is a CFG and w is a string, 0. Check if ⟨G, w⟩ is proper encoding of CFG and string; if not, reject. 1. Convert G into equivalent CFG G' in Chomsky normal form. 2. If w = ε, check if S → ε is a rule of G'. If so, accept; otherwise, reject. 3. If w ≠ ε, list all derivations with 2n - 1 steps, where n = w . 4. If any generates w, accept; otherwise, reject. Remarks: # derivations with 2n - 1 steps is finite, so TM is a decider. We consider a more efficient algorithm in Chapter 7. 		
<i>CS 341: Chapter 4</i> 4-19	<i>CS 341: Chapter 4</i> 4-20		
Emptiness Problem for CFGs is Decidable			
-	Are Two CFGs Equivalent?		
Decision problem: Is a CFG's language empty?			
Decision problem: Is a CFG's language empty? $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$ $\subseteq \{ \langle G \rangle \mid G \text{ is a CFG} \} \equiv \Omega$	· · · · · · · · · · · · · · · · · · ·		
Decision problem: Is a CFG's language empty? $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$	• Decision problem: Are two CFGs equivalent? $EQ_{CFG} = \{ \langle G, H \rangle \mid G, H \text{ are CFGs and } L(G) = L(H) \}$		
Decision problem: Is a CFG's language empty? $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$ $\subseteq \{ \langle G \rangle \mid G \text{ is a CFG} \} \equiv \Omega$ Theorem 4.8 $E_{CFG} \text{ is decidable.}$ Proof. On input $\langle G \rangle \in \Omega$, where G is a CFG,	 Decision problem: Are two CFGs equivalent? EQ_{CFG} = { ⟨G, H⟩ G, H are CFGs and L(G) = L(H) } ⊆ { ⟨G, H⟩ G, H are CFGs } ≡ Ω. For DFAs we could use the emptiness decision procedure to solve the 		
Decision problem: Is a CFG's language empty? $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$ $\subseteq \{ \langle G \rangle \mid G \text{ is a CFG} \} \equiv \Omega$ Theorem 4.8 E_{CFG} is decidable.	 Decision problem: Are two CFGs equivalent? EQ_{CFG} = { ⟨G, H⟩ G, H are CFGs and L(G) = L(H) } ⊆ { ⟨G, H⟩ G, H are CFGs } ≡ Ω. For DFAs we could use the emptiness decision procedure to solve the equality problem. Try to construct CFG C from CFGs G and H such that L(C) = [L(G) ∩ L(H)] ∪ [L(G) ∩ L(H)] 		
 Decision problem: Is a CFG's language empty? E_{CFG} = { ⟨G⟩ G is a CFG with L(G) = ∅ } ⊆ { ⟨G⟩ G is a CFG } ≡ Ω Theorem 4.8 E_{CFG} is decidable. Proof. On input ⟨G⟩ ∈ Ω, where G is a CFG, 0. Check if ⟨G⟩ is a proper encoding of a CFG G = (V, Σ, R, S); if not, reject. 1. Define set T ⊆ V ∪ Σ such that u ∈ T iff u [*]⇒ w for some w ∈ Σ[*]. 	 Decision problem: Are two CFGs equivalent? EQ_{CFG} = { ⟨G, H⟩ G, H are CFGs and L(G) = L(H) } ⊆ { ⟨G, H⟩ G, H are CFGs } ≡ Ω. For DFAs we could use the emptiness decision procedure to solve the equality problem. Try to construct CFG C from CFGs G and H such that L(C) = [L(G) ∩ L(H)] ∪ [L(G) ∩ L(H)] and check if L(C) is empty using TM decider for E_{CFG}. 		
 Decision problem: Is a CFG's language empty? E_{CFG} = { ⟨G⟩ G is a CFG with L(G) = ∅ } ⊆ { ⟨G⟩ G is a CFG } ≡ Ω Theorem 4.8 E_{CFG} is decidable. Proof. On input ⟨G⟩ ∈ Ω, where G is a CFG, 0. Check if ⟨G⟩ is a proper encoding of a CFG G = (V, Σ, R, S); if not, reject. 1. Define set T ⊆ V ∪ Σ such that u ∈ T iff u [*]⇒ w for some w ∈ Σ*. Initially, T = Σ, and iteratively add to T. 	 Decision problem: Are two CFGs equivalent? EQ_{CFG} = { ⟨G, H⟩ G, H are CFGs and L(G) = L(H) } ⊆ { ⟨G, H⟩ G, H are CFGs } ≡ Ω. For DFAs we could use the emptiness decision procedure to solve the equality problem. Try to construct CFG C from CFGs G and H such that L(C) = [L(G) ∩ L(H)] ∪ [L(G) ∩ L(H)] and check if L(C) is empty using TM decider for E_{CFG}. We can't define CFG C for symmetric difference. Why? 		
 Decision problem: Is a CFG's language empty? E_{CFG} = { ⟨G⟩ G is a CFG with L(G) = ∅ } ⊆ { ⟨G⟩ G is a CFG } ≡ Ω Theorem 4.8 E_{CFG} is decidable. Proof. On input ⟨G⟩ ∈ Ω, where G is a CFG, 0. Check if ⟨G⟩ is a proper encoding of a CFG G = (V, Σ, R, S); if not, reject. 1. Define set T ⊆ V ∪ Σ such that u ∈ T iff u [*]⇒ w for some w ∈ Σ*. Initially, T = Σ, and iteratively add to T. 2. Repeat V times: 	 Decision problem: Are two CFGs equivalent? EQ_{CFG} = { ⟨G, H⟩ G, H are CFGs and L(G) = L(H) } ⊆ { ⟨G, H⟩ G, H are CFGs } ≡ Ω. For DFAs we could use the emptiness decision procedure to solve the equality problem. Try to construct CFG C from CFGs G and H such that L(C) = [L(G) ∩ L(H)] ∪ [L(G) ∩ L(H)] and check if L(C) is empty using TM decider for E_{CFG}. We can't define CFG C for symmetric difference. Why? Class of CFLs not closed under complementation nor intersection. 		
 Decision problem: Is a CFG's language empty? E_{CFG} = { ⟨G⟩ G is a CFG with L(G) = ∅ } ⊆ { ⟨G⟩ G is a CFG } ≡ Ω Theorem 4.8 E_{CFG} is decidable. Proof. On input ⟨G⟩ ∈ Ω, where G is a CFG, 0. Check if ⟨G⟩ is a proper encoding of a CFG G = (V, Σ, R, S); if not, reject. 1. Define set T ⊆ V ∪ Σ such that u ∈ T iff u [*]⇒ w for some w ∈ Σ*. Initially, T = Σ, and iteratively add to T. 	 Decision problem: Are two CFGs equivalent? EQ_{CFG} = { ⟨G, H⟩ G, H are CFGs and L(G) = L(H) } ⊆ { ⟨G, H⟩ G, H are CFGs } ≡ Ω. For DFAs we could use the emptiness decision procedure to solve the equality problem. Try to construct CFG C from CFGs G and H such that L(C) = [L(G) ∩ L(H)] ∪ [L(G) ∩ L(H)] and check if L(C) is empty using TM decider for E_{CFG}. We can't define CFG C for symmetric difference. Why? 		

<i>CS 341: Chapter 4</i> 4-21		CS 341: Chapter 4	4-22
CFLs are Decidable		Proof that Every CFL <i>L</i> is Decidable	
Theorem 4.9 Every CFL L is a decidable language.		 Let L be a CFL with alphabet Σ, so L ⊆ Σ* G' be a CFG for language L 	
 Bad Idea for Proof: Convert PDA for L directly into a TM. Can do this by using TM tape to simulate PDA stack. Nondeterministic PDA yields nondeterministic TM (NTM). NTM can be converted into deterministic TM (DTM). Problem: Some branch of PDA might run forever. Some branch of NTM might run forever. Corresponding DTM recognizes L, but does not decide L since it may not halt on every input. 		 G be a Cr G for fainguage L S be a TM from Theorem 4.7 that decides A_{CFG} = { ⟨G, w⟩ G is a CFG that generates string w } Construct TM M_{G'} for language L having CFG G' as follows: M_{G'} = "On input w ∈ Σ*: Run TM decider S on input ⟨G', w⟩. If S accepts, accept; otherwise, reject." How do TMs S and M_{G'} differ? TM S has input ⟨G, w⟩. TM M_{G'} has input w for fixed G'. 	
CS 341: Chapter 4 Hierarchy of Languages (so f	4-23 ar)	CS 341: Chapter 4 The Universal TM U	4-24
All languages Turing-recognizable TM, k-tape TM, NTM, enumerator, Decidable Decider (deterministic, nondet, k-tape,) Context-free CFG, PDA Regular DFA, NFA, Reg Exp Finite	Examples ??? $\{ 0^n 1^n 2^n n \ge 0 \}$ $\{ 0^n 1^n n \ge 0 \}$ $(0 \cup 1)^*$ $\{ 110, 01 \}$	 Is one TM capable of simulating all other TMs? Given an encoding ⟨M, w⟩ of a TM M and input w, can we simulate M on w? We can do this via a universal TM U: U = "On input ⟨M, w⟩, where M is a TM and w is a string 1. Simulate M on input w. 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject." Can think of U as an emulator. 	<u>y</u> :

<i>CS 341: Chapter 4</i> 4-25	<i>CS 341: Chapter 4</i> 4-26		
Acceptance Problem for TMs is Turing-Recognizable	Unsolvable Problems		
• Decision problem: Does a given TM M accept a given string w ?	 Computers (and computation) are limited in a very fundamental way. 		
• Instance: $\langle M, w \rangle$, where M is TM, w is a string.	• Computers (and computation) are innited in a very fundamental way.		
• Universe: $\Omega = \{ \langle M, w \rangle \mid M \text{ is TM and } w \text{ is string } \}.$	 Common, every-day problems are unsolvable (i.e., undecidable) 		
• Language: $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is TM that accepts string } w \} \subseteq \Omega.$	Does a program sort an array of integers?		
$ullet$ For a specific pair $\langle M,w angle\in \Omega$ of TM M and string w ,	 Both program and specification are precise mathematical objects. 		
• $\langle M, w \rangle \in A_{TM}$ if M accepts w • $\langle M, w \rangle \notin A_{TM}$ if M does not accept w .	 One might think that it is then possible to develop an algorithm that can determine if a program matches its specification. 		
• Universal TM U	 However, this is impossible. 		
 U recognizes A_{TM}, so A_{TM} is Turing-recognizable. U does not decide A_{TM}. ▲ If M loops on w, then U loops on ⟨M, w⟩. 	• To show this, we need to introduce some new ideas.		
• But can we also decide A_{TM} ?			
• We will see later that A_{TM} is undecidable .			
<i>CS 341: Chapter 4</i> 4-27	<i>CS 341: Chapter 4</i> 4-28		
CS 341: Chapter 4 4-27 Mappings and Functions	CS 341: Chapter 4 Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is		
 Mappings and Functions Consider fcn f : A → B mapping objects in one set A to another B. Definition: f is one-to-one (aka injective) if every x ∈ A has a unique image f(x): 	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is		
Mappings and Functions• Consider fcn $f : A \to B$ mapping objects in one set A to another B.• Definition: f is one-to-one (aka injective) if every $x \in A$ has a unique image $f(x)$:• If $f(x) = f(y)$, then $x = y$.	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is • one-to-one since $x \neq y$ implies $e^x \neq e^y$.		
 Mappings and Functions Consider fcn f : A → B mapping objects in one set A to another B. Definition: f is one-to-one (aka injective) if every x ∈ A has a unique image f(x): 	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is • one-to-one since $x \neq y$ implies $e^x \neq e^y$. • not onto since $e^x > 0$ for all $x \in \mathcal{R}$.		
Mappings and Functions• Consider fcn $f : A \to B$ mapping objects in one set A to another B.• Definition: f is one-to-one (aka injective) if every $x \in A$ has a unique image $f(x)$:• If $f(x) = f(y)$, then $x = y$.	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is • one-to-one since $x \neq y$ implies $e^x \neq e^y$. • not onto since $e^x > 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^2$ is		
 Mappings and Functions Consider fcn f : A → B mapping objects in one set A to another B. Definition: f is one-to-one (aka injective) if every x ∈ A has a unique image f(x): If f(x) = f(y), then x = y. Equivalently, if x ≠ y, then f(x) ≠ f(y). 	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is • one-to-one since $x \neq y$ implies $e^x \neq e^y$. • not onto since $e^x > 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^2$ is • not one-to-one since $3^2 = (-3)^2 = 9$. • not onto since $x^2 \ge 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^3$ is		
Mappings and Functions • Consider fon $f : A \to B$ mapping objects in one set A to another B . • Definition: f is one-to-one (aka injective) if every $x \in A$ has a unique image $f(x)$: • If $f(x) = f(y)$, then $x = y$. • Equivalently, if $x \neq y$, then $f(x) \neq f(y)$. • Definition: f is onto (aka surjective) if every $z \in B$ is "hit" by f : • If $z \in B$, then there is an $x \in A$ with $f(x) = z$. • Definition: f is a correspondence (aka bijection)	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is • one-to-one since $x \neq y$ implies $e^x \neq e^y$. • not onto since $e^x > 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^2$ is • not one-to-one since $3^2 = (-3)^2 = 9$. • not onto since $x^2 \ge 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^3$ is • one-to-one since $x \neq y$ implies $x^3 \neq y^3$.		
Mappings and Functions • Consider fcn $f : A \to B$ mapping objects in one set A to another B . • Definition: f is one-to-one (aka injective) if every $x \in A$ has a unique image $f(x)$: • If $f(x) = f(y)$, then $x = y$. • Equivalently, if $x \neq y$, then $f(x) \neq f(y)$. • Definition: f is onto (aka surjective) if every $z \in B$ is "hit" by f : • If $z \in B$, then there is an $x \in A$ with $f(x) = z$. • Definition: f is a correspondence (aka bijection) if toth one-to-one and onto.	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is • one-to-one since $x \neq y$ implies $e^x \neq e^y$. • not onto since $e^x > 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^2$ is • not one-to-one since $3^2 = (-3)^2 = 9$. • not onto since $x^2 \ge 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^3$ is • one-to-one since $x \neq y$ implies $x^3 \neq y^3$. • onto since for any $z \in \mathcal{R}$, letting $x = z^{1/3}$ yields		
Mappings and Functions• Consider fcn $f: A \to B$ mapping objects in one set A to another B .• Definition: f is one-to-one (aka injective) if every $x \in A$ has a unique image $f(x)$:• If $f(x) = f(y)$, then $x = y$.• Equivalently, if $x \neq y$, then $f(x) \neq f(y)$.• Definition: f is onto (aka surjective) if every $z \in B$ is "hit" by f :• If $z \in B$, then there is an $x \in A$ with $f(x) = z$.• Definition: f is a correspondence (aka bijection)	Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is • one-to-one since $x \neq y$ implies $e^x \neq e^y$. • not onto since $e^x > 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^2$ is • not one-to-one since $3^2 = (-3)^2 = 9$. • not onto since $x^2 \ge 0$ for all $x \in \mathcal{R}$. Example: $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^3$ is • one-to-one since $x \neq y$ implies $x^3 \neq y^3$.		

CS 341: Chapter 4

4-29

4-31

Cardinality

- Set T has |T| = k iff \exists correspondence between $\{1, 2, \dots, k\}$ and T, in which case $\{1, 2, \ldots, k\}$ and T are of the same size.
 - **Ex:** |T| = 3.

S	1 • 2 • 3 •	f	Т
	5		

• If \exists one-to-one mapping from set S to set T, then T is at least as big as S, i.e., $|T| \ge |S|$.

- **Defn:** Two sets S and T, possibly infinite, are of the same size if there is a *correspondence* between them.
- If \exists one-to-one fcn from S to T but $\not\equiv$ correspondence from S to T, then T is strictly bigger than S.

CS 341: Chapter 4

Set of Rational Numbers is Countable

Fact: The set of rational numbers

$$\mathcal{Q} = \left\{ \left. \frac{m}{n} \right| \ m, n \in \mathcal{N} \right\}$$

is countable.

Proof.

• Write out elements in Q as an infinite 2-dimensional array:

1/1	1/2	1/3	1/4	1/5		
2/1	2/2	2/3	2/4	2/5		
3/1	3/2	3/3	3/4	3/5		
4/1	4/2	4/3	4/4	4/5		
:	:	:	:	:	· · .	

	C		
1 •-	J		T
2 🖝		-	
3 🗕		-≻●	

CS 341: Chapter 4

Countable Sets

- Let $\mathcal{N} = \{1, 2, 3, \ldots\}$ be the set of natural numbers.
- Set T is **infinite** if there exists a **one-to-one** function $f : \mathcal{N} \to T$.
 - "The set T is at least as big as the set \mathcal{N} ."
- Set T is **countable** if it is finite or has the same size as \mathcal{N} .
 - Can list out (i.e., enumerate) all elements in a countable set
 - each element is eventually listed.

Fact: $\mathcal{N} = \{1, 2, 3, ...\}$ and $\mathcal{E} = \{2, 4, 6, ...\}$ have same size.

Proof. Define correspondence between \mathcal{N} and \mathcal{E} by function f(i) = 2i.

Remark: Set T and a proper subset of T can have the same size!

CS 341: Chapter 4

4-32

• If we try to

- first list all elements in first row,
- then list all elements in second row,
- and so on,

then we will never get to the second row because the first row is infinitely long.

- Instead.
 - enumerate elements along Southwest to Northeast diagonals,
 - skip duplicates.

• We now construct a number x between 0 and 1 that is not in the list

using Cantor's diagonalization method

Theorem 4.17 The set \mathcal{R} of all real numbers is uncountable.

<i>CS 341: Chapter 4</i> 4-37	<i>CS 341: Chapter 4</i> 4-38		
Diagonalization Method	Set of All TMs is Countable		
• Let $x = 0. d_1 d_2 d_3 \dots$, where	Fact: If $S \subseteq T$ and T is countable, then S is countable. Proof. In enumeration of T , skip elements in $T - S$ to enumerate S .		
• d_n is <i>n</i> th digit after decimal point in decimal expansion of x			
 d_n differs from the nth digit in the nth number in the list. n f(n) 1 3.14159 2 0.55555 3 40.00000 4 15.20361 : : : For example, can take x = 0.2617 ∀n, x differs from nth number f(n) in the list in at least position n, so x is not in the list, contradiction since list is supposed to contain all of R, including x. Thus, ₹ correspondence f : N → R, so R is uncountable. 	 Fact: For any (finite) alphabet Ψ, the set Ψ* is countable. Proof. Enumerate strings in string order. Fact: The set of all TMs is countable. Proof. Every TM has a finite description. Can describe TM M using encoding ⟨M⟩ Encoding is a finite string of symbols over some alphabet Ψ. So just enumerate all strings over Ψ omit any that are not legal TM encodings. Since Ψ* is countable, there are only a countable number of different TMs. 		
<i>CS 341: Chapter 4</i> 4-39	<i>CS 341: Chapter 4</i> 4-40		
Set of All Languages is Uncountable	• Recall: Each language $A \in \mathcal{L}$ has a unique sequence $\chi(A) \in \mathcal{B}$		
Fact: The set \mathcal{B} of all <i>infinite</i> binary sequences is uncountable. Proof. Use diagonalization argument as in proof that \mathcal{R} is uncountable. Fact: The set \mathcal{L} of all languages over alphabet Σ is uncountable. Proof.	• nth bit of $\chi(A)$ is 1 if and only if $s_n \in A$. • Example: For $\Sigma = \{0, 1\}$, $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, \dots \}$ $A = \{ 0, 00, 01, 000, \dots \}$ $\chi(A) = 0 1 0 1 1 0 0 1 \dots$		
• Idea: show \exists correspondence χ between \mathcal{L} and \mathcal{B} ,	• The mapping $\chi : \mathcal{L} \to \mathcal{B}$ is a correspondence because it is		
so \mathcal{L} has same size as uncountable set \mathcal{B} .	• one-to-one : different languages A_1 and A_2 differ for at least one		
 Language's characteristic sequence defined by correspondence 	string s_i , so the <i>i</i> th bits of $\chi(A_1)$ and $\chi(A_2)$ differ;		
$\chi:\mathcal{L} ightarrow\mathcal{B}$	• onto : for each sequence $b \in \mathcal{B}$, \exists language A for which $\chi(A) = b$.		
 Write out elements in Σ* in string order: s₁, s₂, s₃, Each language A ∈ L has a unique sequence χ(A) ∈ B. The nth bit of χ(A) is 1 if and only if s_n ∈ A 	 Thus, <i>L</i> is same size as uncountable set <i>B</i>, so <i>L</i> is also uncountable. 		

<i>CS 341: Chapter 4</i> 4-41	<i>CS 341: Chapter 4</i> 4-42
Some Languages are not Turing-Recognizable	Revisit Acceptance Problem for TMs
• Each TM recognizes some language.	• Decision problem: Does a TM M accept string w ?
• Set of all TMs is countable.	$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that } \mathbf{accepts} \text{ string } w \} \\ \subseteq \{ \langle M, w \rangle \mid M \text{ is a TM and } w \text{ is a string} \} \equiv \Omega$
 Set of all languages is uncountable. 	• Universe Ω of instances
 Since uncountable sets are larger than countable ones, ∃ more languages than there are TMs that can recognize them. 	 contains all possible pairs of TM M and string w not just a specific instance. For a specific TM M and string w,
 Corollary 4.18 Some languages are not Turing-recognizable. What kind of languages are not Turing-recognizable? We'll see some later 	 if M accepts w, then ⟨M, w⟩ ∈ A_{TM} is a YES instance if M doesn't accept w (rejects or loops), then ⟨M, w⟩ ∉ A_{TM} is a NO instance. Theorem 4.11
	A_{TM} is undecidable.
<i>CS 341: Chapter 4</i> 4-43	<i>CS 341: Chapter 4</i> 4-44
Outline of Proof by Contradiction	Proof by Contradiction that A_{TM} is Undecidable
• Suppose A_{TM} is decided by some TM H , with input $\langle M, w \rangle \in \Omega$.	• Suppose there exists a TM H that decides A_{TM} .
$\langle M, w \rangle \longrightarrow H \qquad \stackrel{accept, \text{ if } \langle M, w \rangle \in A_{TM}}{\underset{reject, \text{ if } \langle M, w \rangle \notin A_{TM}}$	 TM H takes input ⟨M, w⟩ ∈ Ω, where M is a TM and w a string. H accepts ⟨M, w⟩ ∈ A_{TM}; i.e., if M accepts w. H rejects ⟨M, w⟩ ∉ A_{TM}; i.e., if M does not accept w.
• Use H as subroutine to define another TM D , with input $\langle M \rangle$.	 Consider language L = { ⟨M⟩ M is TM that doesn't accept ⟨M⟩ }. Using TM H as subroutine, we can construct TM D that decides L:
$\langle M \rangle \longrightarrow \begin{array}{c} D \\ \langle M, \langle M \rangle \rangle \longrightarrow \end{array} \qquad H \qquad \stackrel{accept}{\underset{reject}{\leftarrow}} \begin{array}{c} accept \\ reject \end{array}$	$D = \text{``On input } \langle M \rangle \text{, where } M \text{ is a TM:} \\ 1. \text{ Run } H \text{ on input } \langle M, \langle M \rangle \rangle. \\ 2. \text{ If } H \text{ accepts, } reject. \text{ If } H \text{ rejects, } accept.''$
	$ullet$ What happens when we run D with input $\langle D angle$?
 What happens when we run D with input ⟨D⟩ ? D accepts ⟨D⟩ iff D doesn't accept ⟨D⟩, which is impossible. 	 Stage 1 of D runs H on input ⟨D, ⟨D⟩⟩. D accepts ⟨D⟩ iff D doesn't accept ⟨D⟩, which is impossible.
• \mathcal{D} accepts $\langle \mathcal{D} \rangle$ in \mathcal{D} doesn't accept $\langle \mathcal{D} \rangle$, which is impossible.	• So TM H must not exist, i.e., A_{TM} is undecidable.

<i>CS 341: Chapter 4</i> 4-45	<i>CS 341: Chapter 4</i> 4-46		
Another View of Proof	Another View of Proof		
Remark: The proof implicitly used diagonalization	• Another table		
 Since the set of all TMs is countable, we can enumerate them: 			
$M_1, M_2, M_3, M_4, \ldots$	 entry (i, j) is value of "acceptance function" H on input ⟨M_i, ⟨M_j⟩⟩: 		
$ullet$ Construct table of acceptance behavior of TM M_i on input $\langle M_j angle$:	$\langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \cdots$		
$ (M_1) \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \cdots $	M_1 accept reject accept reject \cdots		
M_1 accept \cdots	M_2 accept accept accept accept \cdots M_3 reject reject reject reject \cdots		
M_2 accept accept accept \cdots	M_3 reject reject reject reject \cdots M_4 accept accept reject reject \cdots		
$\begin{array}{c c} M_3 & \cdots & \\ M_4 & \text{accept} & \text{accept} & \cdots \end{array}$			
 Blank entries are reject or loop. CS 341: Chapter 4 4-47 Another View of Proof Diagonal entries swapped for output of D on (M_i). 	CS 341: Chapter 4 4-48 Another View of the Problem • "Self-referential paradox"		
• D is a TM, so it must appear in the enumeration M_1, M_2, M_3, \ldots	■ occurs when we force the TM <i>D</i> to disagree with itself.		
• Contradiction occurs when evaluating D on $\langle D \rangle$:	$ullet$ D knows what it is going to do on input $\langle D angle$ by H ,		
	• but then D does the opposite instead.		
$\langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \cdots \langle D \rangle$	 You cannot know for sure what you will do in the future. 		
M_1 accept reject accept reject \cdots accept \cdots	If you could, then you could change your actions and create a		
M_2 accept accept accept accept \cdots accept \cdots	paradox.		
M_{3} reject reject reject reject \cdots reject \cdots	 The diagonalization method implements the self-reference paradox in a 		
M_{4} accept accept reject <u>reject</u> \cdots accept \cdots	mathematical way.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 In logic this approach often used to prove that certain things are impossible. 		
: : : : ··. ··.	 Kurt Gödel gave a mathematical equivalent of the statement "This sentence is not true" or "I am lying." 		

Co-Turing-Recognizable Languages

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \, \}$

• A_{TM} is not Turing-decidable, but is Turing-recognizable.

- \blacksquare Use universal TM U to simulate TM M on string w.
 - ▲ If M accepts w, then U accepts $\langle M, w \rangle \in A_{\mathsf{TM}}$.
 - ▲ If M rejects w, then U rejects $\langle M, w \rangle \notin A_{\mathsf{TM}}$.
 - ▲ If M loops on w, then U loops on $\langle M, w \rangle \notin A_{\mathsf{TM}}$.
- What about a language that is not Turing-recognizable?
- \bullet Recall that complement of language A over alphabet Σ is

$$\overline{A} = \Sigma^* - A.$$

Definition: Language A is **co-Turing-recognizable** if its complement \overline{A} is Turing-recognizable.

CS 341: Chapter 4

 $\textbf{Decidable} \Rightarrow \textbf{TM-recognizable} \text{ and } \textbf{co-TM-recognizable}$

- Suppose language A is **decidable**.
- Then A is **Turing-recognizable**.
- \bullet Also, since A is decidable, $\exists \ \mathsf{TM} \ M$ that
 - always halts
 - correctly accepts strings $w \in A$
 - correctly rejects strings $w \not\in A$
- Define TM M' same as M except swap accept and reject states.
 - M' rejects when M accepts,
 - M' accepts when M rejects.
- TM M' always halts since M always halts, so M' decides \overline{A} .
 - Thus, \overline{A} is also Turing-recognizable
 - i.e., A is **co-Turing-recognizable**.

CS 341: Chapter 4

4-49

4-51

$\label{eq:deltacomplex} \text{Decidable} \iff \text{Turing- and co-Turing-recognizable}$

Theorem 4.22

A language is decidable if and only if it is both

- Turing-recognizable and
- co-Turing-recognizable.

CS 341: Chapter 4

Remarks:

4-53

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

is **Turing-recognizable** (by UTM) but **not decidable** (Thm 4.11).

• Theorem 4.22: Decidable \Leftrightarrow Turing-recog and co-Turing-recognizable.

• $\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does$ **not** $accept string <math>w \}.$

• $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$

CS 341: Chapter 4

Some Other Non-Turing-Recognizable Languages

We'll later show the following languages are also not Turing-recognizable:

- $E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \},$ which is co-Turing-recognizable.
- $EQ_{\mathsf{TM}} = \{ \langle M, N \rangle | M \text{ and } N \text{ are TMs with } L(M) = L(N) \},$ which is not even co-Turing-recognizable.

