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Proofs of Decidability

How can you prove a language is decidable?
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What Decidable Means

A language L is decidable if there exists a TM 

M such that for all strings w:

– If w ∈ L, M enters qAccept.

– If w ∉ L, M enters qReject.

To prove a language is decidable, we can 

show how to construct a TM that decides it.

For a correct proof, need a convincing argument that the 

TM always eventually accepts or rejects any input.
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Proofs of Undecidability

How can you prove a language is undecidable?
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Proofs of Undecidability

To prove a language is undecidable, need 

to show there is no Turing Machine that 

can decide the language.

This is hard: requires reasoning about all possible TMs.
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Proof by Reduction

1. We know X does not exist.

(e.g., X = a TM that can decide ATM )X

2. Assume Y exists.

(e.g., Y = a TM that can decide B)
Y

3. Show how to use Y to make X. Y

4. Since X does not exist, but Y could be used to 

make X, then Y must not exist.
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Reduction Proofs

Breduces to   A

means

Y

that can solve B

can be used to make  X
that can solve A

The name “reduces” is confusing: it is in the 

opposite direction of the making.

Hence, A is not a harder problem than B.
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Converse?

Y

that can solve B

can be used to make  X
that can solve A

A is not a harder problem than B.

A reduces to B

Does this mean B is as hard as A?

No! Y can be any solver for B.  X is one solver for A.

There might be easier solvers for A.
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Reduction Pitfalls

• Be careful: the direction matters a great deal

– Showing a machine that decides B can be used to 
build a machine that decides A shows that A is not 
harder than B.

– To show equivalence, need reductions in both 
directions.

• The transformation must involve only things 
you know you can do: otherwise the 
contradiction might be because something 
else doesn’t exist.

What does can do mean here?
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What “Can Do” Means

• The transformations in a reduction proof are 
limited by what you are proving

• For undecidability proofs, you are proving 
something about all TMs: the reduction 
transformations are anything that a TM can 
do that is guaranteed to terminate

• For complexity proofs (later), you are proving 
something about how long it takes: the time it 
takes to do the transformation is limited
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The Halting Problem

HALTTM = { <M, w> | M is a TM description 

and M halts on input w }

Alternate statement as problem:

Input: A TM M and input w

Output: True if M halts on w, otherwise False.
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Is HALTTM Decidable?

• Possible “Yes” answer: Prove it is decidable

• Possible “No” answer: prove it is undecidable

Design a TM that can decide HALTTM

Show that no TM can decide HALTTM

Show that a TM that could decide HALTTM could be used 

to decide ATM which we already proved is undecidable.
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Acceptance Language

ATM = { <M, w> | M is a TM description 

and M accepts input w }

We proved  ATM is undecidable last class.

Since we know ATM is undecidable, we can show a new 

language B is undecidable if a machine that can decide B

could be used to build a machine that can decide ATM.
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Reducing ATM to HALTTM

HALTTM = { <M, w> | M is a TM description 

and M halts on input w }

ATM = { <M, w> | M is a TM description 

and M accepts input w }

<M, w> is in ATM if and only if:

M halts on input w

and when M halts it is in accepting state.

15Lecture 17: Proving Undecidability

Deciding ATM

• Assume HALTTM is decidable.  

• Then some TM R can decide HALTTM.

• We can use R to build a machine that decides ATM:

– Simulate R on <M, w>

– If R rejects, it means M doesn’t halt: reject.

– If R accepts, it means M halts:

• Simulate M on w, accept/reject based on M’s accept/reject.

Since any TM that decides HALTTM could be used to build 
a TM that decides ATM (which we know is impossible) this 
proves that no TM exists that can decide HALTTM .
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Equivalence of DFA D and TM M

EQDM = { <D, T > |  D is a DFA description,

T is a TM description 

and L(T) = L(D) }

Is EQDM decidable?
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EQDM Is Undecidable

• Suppose R decides EQDM.

• Can we use R to decide HALTTM?

HALTTM = { <M, w> | M is a TM description 

and M halts on input w }

EQDM = { <D, T > |  D is a DFA description,

T is a TM description 

and L(T) = L(D) }

Given M and w, how can you construct D and T so

R(<D, T>) tells you if M halts on w?
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EQDM Is Undecidable

HALTTM = { <M, w> | M is a TM description 

and M halts on input w }

EQDM = { <D, T > |  D is a DFA description,

T is a TM description 

and L(T) = L(D) }

D = DFA that accepts all strings.

T = TM that ignores input and simulates M on w,

and if simulated M accepts or rejects, accept.
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EQDM Is Undecidable

HALTTM = { <M, w> | M is a TM description 

and M halts on input w }

EQDM = { <D, T > |  D is a DFA description,

T is a TM description 

and L(T) = L(D) }

D = DFA that rejects all strings.

T = TM that ignores input and simulates M on w,

and if simulated M accepts or rejects, reject.
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Rice’s Theorem

Any nontrivial property about the 

language of a Turing machine is 

undecidable.

Henry Gordon Rice, 1951

Nontrivial means the property is true for 

some TMs, but not for all TMs.
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Which of these are Undecidable?

• Does TM M accept any strings?

• Does TM M accept all strings?

• Does TM M accept “Hello”?

• Does TM M1 accept more strings than TM M2?

• Does TM M take more than 1000 steps to 

process input w?

• Does TM M1 take more steps than TM M2 to 

process input w?

Decidable

Undecidable

Undecidable

Undecidable
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Next Class

• Examples of some problems we actually care 

about that are undecidable

• Are there any problems that we don’t know if 

they are decidable or undecidable?

• PS5 Due next Tuesday (April 1)

• Exam 2 in two weeks


