
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

REDUCIBILITY

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 1 / 20

THE LANDSCAPE OF THE CHOMSKY HIERARCHY

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 2 / 20

REDUCIBILITY

A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.

Finding the area of a rectangle, reduces to measuring its width and height
Solving a set of linear equations, reduces to inverting a matrix.

Reducibility involves two problems A and B.
If A reduces to B, you can use a solution to B to solve A

When A is reducible to B solving A can not be “harder” than solving B.
If A is reducible to B and B is decidable, then A is also decidable.
If A is undecidable and reducible to B, then B is undecidable.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 3 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.1
HALTTM = {〈M,w〉 | M is a TM and M halts on input w} is undecidable.

PROOF

Use the idea that “ If A is undecidable and reducible to B, then B is
undecidable.”
Suppose R decides HALTTM . We construct S to decide ATM .
S = “On input 〈M,w〉

1 Run R on input 〈M,w〉.
2 If R rejects reject.
3 If R accepts, simulate M on w until it halts.
4 If M has accepted, accept; If M has rejected, reject.”

Since ATM is reduced to HALTTM , HALTTM is undecidable.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 4 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

Suppose R decides ETM . We try to construct S to decide ATM using R.
Note that S takes 〈M,w〉 as input.

One idea is to run R on 〈M〉 to check if M accepts some string or not –
but that that does not tell us if M accepts w .
Instead we modify M to M1. M1 rejects all strings other than w but on w ,
it does what M does.
Now we can check if L(M1) = Φ.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 5 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

PROOF

For any w define M1 as
M1 = “On input x :

1 If x 6= w , reject.
2 If x = w , run M on input w and accept if M does.”

Note that M1 either accepts w only or nothing!

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 6 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

PROOF CONTINUED

Assume R decides ETM

S defines below uses R to decide on ATM
S = “On input 〈M,w〉

1 Use 〈M,w〉 to construct M1 above.
2 Run R on input 〈M1〉
3 If R accepts, reject, if R rejects, accept.

So, if R decides M1 is empty,
then M does NOT accept w ,
else M accepts w .

If R decides ETM then S decides ATM – Contradiction.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 7 / 20

TESTING FOR REGULARITY (OR OTHER PROPERTIES)

Can we find out if a language accepted by a Turing machine M is
accepted by a simpler computational model?

Is the language of a TM actually a regular language? (REGULARTM)
Is the language of a TM actually a CFL? (CFLTM)
Does that language of a TM have an “interesting” property?

Rice’s Theorem.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 8 / 20

TESTING FOR REGULARITY

REGULARTM = {〈M〉 | M is a TM and L(M) is a regular language } is
undecidable.

PROOF IDEA

We assume REGULARTM is decidable by a TM R and use this
assumption to construct a TM S that decides ATM .
The basic idea is for S to take as input 〈M〉 and modify M into M2 so that
the resulting TM recognizes a regular language if and only if M accepts
w .
M2

accepts {0n1n | n ≥ 0} if M does not accept w ,
but recognizes Σ∗ if M accepts w .

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 9 / 20

TESTING FOR REGULARITY

PROOF IDEA –CONTINUED

M2 accepts {0n1n | n ≥ 0} if M does not accept w , but recognizes Σ∗ if M
accepts w .
What does M2 look like?
M2 = “On input x

1 If x has the form 0n1n, accept.
2 If x does not have this form, run M on input w and accept if M accepts w .”

All strings x (that is Σ∗) are accepted if M accepts w .

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 10 / 20

TESTING FOR REGULARITY

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 11 / 20

TESTING FOR REGULARITY

PROOF

S = “On input 〈M,w〉, where M is a TM and w is a string:
1 Construct the following TM M2.
2 M2 = “On input x

1. If x has the form 0n1n, accept.
2. If x does not have this form, run M on input w and accept if M accepts w .”

3 Run R on 〈M2〉
4 If R accepts, accept, if R rejects, reject.

So, R will say M2 is a regular language, if M accepts w .
S says “M accepts w” if R decides M2 is regular – Contradiction!

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 12 / 20

TESTING FOR LANGUAGE EQUALITY

THEOREM 5.4
EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)} is undecidable.

PROOF IDEA

We reduce ETM (the emptiness problem) to this problem.
If one of the languages is empty, determining equality is the same as
determining if the second language is empty!
In fact, the ETM is a special case of the EQTM problem!!

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 13 / 20

TESTING FOR LANGUAGE EQUALITY

THEOREM 5.4
EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)} is undecidable.

PROOF

Assume R decides EQTM

S = “On input 〈M〉 where M is a TM:
1 Run R on input 〈M,M1〉 where M1 is a TM that rejects all inputs.
2 If R accepts, accept; if R rejects reject”

Thus, if R decides EQTM , then S decides ETM

But ETM is undecidable, so EQTM , must be undecidable.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 14 / 20

REDUCTIONS VIA COMPUTATION HISTORIES

An accepting computation history for a TM is a sequence of
configurations

C1,C2, . . . ,Cl

such that
C1 is the start configuration for input w
Cl is an accepting configuration, and
each Ci follows legally from the preceding configuration.

A rejecting computation history is defined similarly.
Computation histories are finite sequences – if M does not halt on w ,
there is no computation history.
Deterministic v.s nondeterministic computation histories.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 15 / 20

LINEAR BOUNDED AUTOMATON

Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.
Such a TM is called a linear bounded automaton (LBA)
Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are
exactly qngn distinct configurations for a tape of length n.

PROOF.
The machine can be in one of q states.
The head can be on one of the n cells.
At most gn distinct strings can occur on the tape.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 16 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF IDEA

We simulate LBA M on w with a TM L (which is NOT an LBA!)
If during simulation M accepts or rejects, we accept or reject accordingly.
What happens if the LBA M loops?

Can we detect if it loops?

M has a finite number of configurations.
If it repeats any configuration during simulation, it is in a loop.
If M is in a loop, we will know this after a finite number of steps.
So if the LBA M has not halted by then, it is looping.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 17 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF

The following TM decides ALBA.
L = “On input 〈M,w〉

1 Simulate M on for qngn steps or until it halts.
2 If M has halted, accept if it has accepted, and reject if it has rejected. If it

has NOT halted, reject.”

LBAs and TMs differ in one important way. ALBA is decidable.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 18 / 20

COMPUTATION OVER “COMPUTATION HISTORIES”

Now for a really wild and crazy idea!
Consider an accepting computation history of a TM M, C1,C2, . . . ,Cl

Note that each Ci is a string.
Consider the string

︸ ︷︷ ︸
C1

︸ ︷︷ ︸
C2

︸ ︷︷ ︸
C3

· · ·# ︸ ︷︷ ︸
Cl

#

The set of all valid accepting histories is also a language!!
This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w .

Check if C1 = q0w1w2 · · ·wn

Check if Cl = · · · qaccept · · ·
Check if each Ci+1 follows from Ci legally.

Note that B is not constructed for the purpose of running it on any input!
If L(B) 6= Φ then M accepts w

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 19 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.10
ELBA = {〈M〉 | M is an LBA and L(M) = Φ} is undecidable.

PROOF.
Suppose TM R decides ELBA, we can construct a TM S which decides
ATM

S = “On input 〈M,w〉, where M is a TM and w is a string
1 Construct LBA B from M and w as described earlier.
2 Run R on 〈B〉.
3 If R rejects, accept; if R accepts, reject.”

So if R says L(B) = Φ, the M does NOT accept w .
If R says L(B) 6= Φ, the M accepts w .
But, ATM is undecidable – contradiction.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 20 / 20

