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CIRCUIT THEQRY is an important and perhaps the old-
est branch of electrical engineering. A circuit is an inter-
connection of electrical elements: passive elements such
as resistances, capacitances, inductances, active elements,
and sources {or excitations). Two variables—namely, volt-
age and current variables—are associated with each circuit
element. There are two aspects to cireuit theory: analysis
and design. In circuit analysis, we are interested in deter-
mination of the values of currents and voltages in different
elements of the circuit, given the values of the sources or
excitations. On the other hand, in circuit design, we are
interested in the design of circuits, which exhibit certain
prespecified voltage or current charactersitics at one or
more parts of the circuit. In this chapter, we will confine
our discussion to certain aspects of circuit analysis.

The behavior or dynamics of a circuit is described by
three systems of equations determined by Ohm's law,
Kirchhoff’s voltage law, and Kirchhoff's current law.
Ohm’s law specifies the relationship between the voliage
and current variables associated with a circuit element.
This relationship is not specified for independent sources.
Also, this relationship could be linear or nonlinear. If the
relationship is linear, then the circuit element is called a
linear element; otherwise, it 1s called a nonlinear element.
Acircuit is linear if it contains only linear elements besides
independent sources. Kirchhoff’s voltage specifies the de-
pendence among the voltage variables in the circuit, and
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Kirchhoff's current law specifies the dependence among
the current variables in the circuit.

The systems of equations determined by the applica-
tion of Kirchhoff’s voltage and current laws depend on the
structure or the graph of the circuit. In other words, they
depend only on the way the circuit elements are intercon-
nected, Thus, the graph of a circuit plays a fundamental
role in the study of circuits. Several interesting properties
of circuits depend only on the structure of the circuits.
Thus, the theory of graphs has played a fundamental role
in discovering structural properties of electrical circuits.

In this chapter we shall develop most of those results
that fosm the foundation of graph theoretic study of electri-
cal circuits. A comprehensive treatment of these develop-
ments may be found in Swamy and Thulasiraman (1981).
All theorems in this chapter are stated without proofs. Qur
discussion here follows closely our development in the
Graph Theoretic Foundation of Circuit Analysis chapter
in Chen (2001).

. GRAPH THEORY: BASIC
CONCEPTS AND RESULTS

Our development of graph theory is self-contained, except
for the definitions of standard and elementary results from
set theory and matrix theory.
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¢ Graph: A graph G =(V, E) consists of two sets,
4 finite set V =(vl, vs,..., v,) of elements called ves
ticesand afinite set E = (e, e, ..., e,) of elements called
edges.

¢ Directed and undirected graph: If the edges of G are
identified with ordered pairs of vertices, then & is called
a directed or an oriented graph; otherwise,it is called an
undirected or an unoriented graph.

Graphs permit easy pictorial representations. In a pictorial
representation each vertex is represented by a dot and each
edge is represented by a line joining the dots associated
with the edge. In directed graphs, an orientation or dircc-
tion is assigned to each edge. If the edge is associated with
the ordered pair (v;, v,), then this edge is oriented from v;
to v;. If an edge e connects vertices v; and v;, then it is
denoted by e = (v;, v;). In a directed graph, (v;, v ;) refers
to an edge directed from (v;, v;). A graph and a directed
graph are shown in Fig. 1. Unless explicitly stated, the
term “graph” may refer to a directed graph or an undi-
rected graph.

o End vertices: The vertices v; and v ; associated with
an edge are called the end vertices of the edge.

¢ Parallel edges: All edges having the same pair of
end vertices are called parallel edges. In a directed graph
paralle] edges refer to edges connecting the same pair of
verices v; and v; the same way from v; to v; or from
v; to v; . For instance, in the graph of Fig. la, the edges
connecting v and v, are parallel edges. In the directed
graph of Fig. b the edges connecting v and v4 are parallel
edges. However, the edges connecting v, and v are not
parallel edges because they are not oriented in the same
wiay,

» Selfloop: If the end vertices of an edge are not distinct,
then the edge is called a self loop. The graph of Fig, la has
one self loop and the graph of Fig. 1b has two self loops.
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An edge is said to be incident on its end vertices. In a
directed graph the edge (v, v;) is said to be incident out
of v; and is said to be incident into v;. Vertices v; and v,
are adjacent if an edge connects v; and v;.

» Degee: The number of edges incident on a vertex v;
is called the degree of v; and is denoted by 4(v;).

¢ In-degree: In a directed graph, 4,,(v;) refers to the
number of edges incident into vertex v;, and it is called
the in-degree.

s Out-degree: [n a directed graph, d,,.(1;) refers to the
number of edges incident out of the vertex v;.

o Isolated vertex: If (v;)=0, then v; is said to be an
isolated vertex,

o Pendant vertex: If 4(v;) = 1, then v; is said to be a
pendant vertex,

A self foop at a vertex v; is counted twice while computing
d(v;). As an example,in the graph of Fig. 1a, d(v;)=3,
d(vs) = 3, and vs is an isolated vertex. In the directed graph
of Fig. 1b, diy(v1) =3, and d,,, (v1) =2.

Note that in a directed graph, for cvery veriex v;,

A(v) = din(V) + doe(v5)

Theorem 1

1. The sum of the degrees of the vertices of a graph G
is equal to 2m, where m is the number of edges of G.

2. In a directed graph with m edges, the sum of the
in-degrees and the sum of the out-degrees are both equal
to .

The following theorem is known to be the first major resuit
in graph theory.
Theorem 2

The number of vertices of odd degree in any graph is even.
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FIGURE 1 (a) An undirected graph, (b) a directed graph.
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FIGURE 2 (a) Graph G; {b) subgraph G.

Consider a graph G =(V’', E'). The graph G' =(V', E’)
isasubgraph of G if V/ C V and E' C E. As an example,
a graph G and a subgraph of G are shown in Fig. 2.

e Path: In a graph G a path P connecting vertices vy
and v; is an alternating sequence of vertices and edges
starting at »; and ending at v;, with all vertices except v;
and v; being distinct.

o Directed path: In a directed graph a path P connect-
ing vertices v; and v; is a called a directed path from v; to
v; if all the edges in P are oriented in the same direction
as we traverse P from v; toward v;,

e Circuit: If a path starts and ends at the same vertex,
it is called a circuit.

¢ Directed circuit: In a directed graph, a circuit in
which all the edges are oriented in the same direction
is called a directed circuit. It is often convenient to rep-
resent paths and circuits by the sequence of edges rep-
resenting them. For example, in the undirected graph of
Fig. 3a, P: e\, €2, €3, €4 18 a path connecting v and vs,
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and C: ey, ez, &3, €4, €5, €5 18 a circuit. In the directed
graph of Fig. 3b, P: e, €3, ¢7, e5 is a directed path, and
C: ey, e2, e7, € 15 a directed circuit. Note that C: e7, €5,
€4, €], €3 1% a circuit in this directed graph, although it is
not a directed circuit. Similarly, P; ey, eg, €| is & path but
not a directed path.

o Connected graph: A graph is connected if there is
a path between every pair of vertices in the graph; other-
wise, the graph is not connected. For example, the graph in
Fig. 2a is 4 connected graph, whereas the graph in Fig, 2b
is not a connected graph.

s Tree: A tree is a graph that is connected and has no
circuits.

¢ Spanning tree: Consider a connected graph &, A
subgraph of G is a spanning tree of G if the subgraph
is a tree and contains all the vertices of (. A tree and a
spanning tree of the graph of Fig. 4a are shown in Figs. 4b
and 4c, respectively.

» Branches: The edges of a spanning tree T" are called
the braches of 7.

(b)

FIGURE 3 (a) An undirected graph; (b} a directed graph.
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FIGURE 4 (a) Graph G; {b} a tree of graph G; (¢) a spanning tree of G.

+ Cospanning tree: Given a spanning tree of connected
graph G, the cospanning tree relative to T is the subgraph
of G induced by the edges that are not present in T. For
cxample, the cospanning tree is relative to the spanning
tree T if Fig. 4¢ consists of the edges e3, €6, €7.

+ Chords: The edges of a cospauning tree are called
chords.

It can be easily be verified that in a tree exactly one path
connects any two vertices. It should be noted that a tree is
minimally connected in the sense that removing any edge
from the tree will result in a disconnected graph.

Theorem 3
A trec on r vertices has n — 1 edges.

If a connected graph G has n vertices and m edges, then
the rank p and nullity i of G are defined as follows:

pG)=n—1
G =m—n+1

The concepts of rank and nullity have parallels in other
branches of mathematics, such as matrix theory.

Clearly, if G is connected, then any spanning tree of &
has p=n — 1 branches and 4 =m —n + 1 chords.

A. Cuts, Circuits, and Orthogonality

We introduce here the notions of a cut and a cutset and de-
velop certain resuits which bring out the dual nature of cir-
cuits and cutsets. Consider a connected graph G =(V, E)
with # vertices and m edges. Let V) and V> be two mutu-
ally disjoint nonempty subsets of V suchthat V = ¥, U Va;
thus, V5 is the complement of V; in V and vice versa. V|
and V; are also said to form a partition of V. Then the set
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FIGURE & (a) Graph G; (b} cut (Y}, V2} of G

of all those edges which have one end vertex in V; and the
other in V; is called a cur of G. As an example, a graph
and a cut {Vy, ¥3) of G are shown in Fig. 5.

The graph G’ which results after removing the edges
in a cut will not be connected. A cutsefr § of a connected
graph G 1s a minimal set of edges of G such that removal
of § disconnects (. Thus, a cutset is also a cut. Note that
the minimality property of a cutset implies that no proper
subset of a cutset is a cutset.

Consider a spanning tree 7' of a connected graph . Let
b be a branch of T. Removal of the branch # disconnects
T into two trees, T; and T5. Let V| and V; denote the
vertex sets of 77 and 75, respectively. Note that V; and
V, together contain all the vertices of . We can verify
that the cut {Vy, V) is a cutset of & and is called the
Sundamental cutset of G with respect to branch b of T,
Thus, for a given graph G and a spanning tree T of G,
we can construct # — | fundamental cutsets, one for each
branch of 7. As an example, for the graph shown in Fig. 5,
the fundamental cutsets with respect to the spanning tree
T=ley, e, ...,6e6,e3] are

Branch e: (&1, &3, €4)
Branch es: (e1, €3, €4, €5)
Branch eg: (g4, €4, €3, €7)

Branch eg: (e, €7}

Note that the fundamental cutset with respect to branch
b contains b, Furthermore, branch 5 is not present in any
other fundamental cutset with respect to T'.

Next we identify a special class of circuits of a con-
nected graph G. Again, let T be a spanning tree of G.
Because exactly one path exists between any two vertices
of T, adding a chord ¢ to T produces a unique circuit. This

circuit is called the fundamental circuit of G with respect
to chord ¢ of 7. Note again that the fundamental circuit
with respect to chord ¢ contains ¢, and chord C is not
present in any other fundamental circuit with respect to
T. As an example, the set of fundamental circuits with re-
spect to the spanning tree T =(¢), ez, és, €y} of the graph
shown in Fig. 5 is

Chord e3: (e3. €1, €7)
Chord ey (e4, €1, €21, €5)
Chord es: (es, €2, €5}
Chord e;: (e7, ex, €5}

B. Incidence, Circuit, and Cut
Matrices of a Graph

The incidence, circuit, and cut matrices are coefficient ma-
trices of Kirchoff’s equations which describe an electrical
network. We next define these matrices and present some
properties of these matrices which are usefu! in the study
of electrical networks.

1. Incidence Matrix

Consider a connected directed graph G with » vertices and
m edges and having no self loops. The all-vertex incidence
matrix Ac = la;; ] of G has a rows, one for each vertex, and
m columns, one for each edge. The element a;; of A, is
defined as follows:

1, if jthedge is incident out of the ith vertex
a;; = § —1, if jthedge isincident into the ith vertex
0, ifthe jthedge is notincident on the ith vertex

As an example, the A, matrix of the directed graph in
Fig. 6 is given below:
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FIGURE 6 A directed graph.
€1 €1 €3 €4 £5 €6 €7
wlfl 0 0 0 0o 1 -1
v |1 1 0 0 0 0 1]
v3| 1 —1 1 0 1 0 0
| 0 6 -1 -1 0 -1 0
vs | O 0 0 1 -1 0 1

From the definition of A., it should be clear that each
column of this matrix has exactly two nonzero entries,
one +1 and one —1; therefore, we can obtain any row of
A, from the remaining rows. Thus,

rank{A,) <mn —1

An (n — 1)-rowed submatrix of A, s referred to as an
incidence matrix of G. The vertex which corresponds to
the row which is not in A, is called the reference vertex
of A.

2. Cut Matrix

Consider a cut (V,, V) in a connected directed graph G
with n vertices and m edges. Recall that {V,,, V},} consists
of all those edges connecting vertices in ¥, to V. This cut
may be assigned an orientation from V, to V, or from V,
to V,. Suppose the orientation of (V,, ¥,) is from V, to
Ve Then the orientation of an edge (v;, v;) is said to agree
with the cut orientation if v; € V,, and v; € V.

The cut matrix Q. =[g;] of G has m columns, one for
each edge, and has one row for each cut. The element ¢; 7
is defined as follows:

1, if the jth edge is in the ith cut and its
orientation agrees with the cut orientation
—1, if the jth edge is in the ith cut and its
orientation does not agree
with the cut orientation
0, if the jth edge is not in the ith cut

qi; =

Each row of (. is called the cur vecror. The edges
incident on a vertex form a cut. Thus it follows that the

matrix A, is a submatrix of Q.. Next we identify another
important submatrix of Q..

Recall that each branch of a spanning tree T of con-
nected graph G defines a fundamental cutset, The subma-
trix of Q.. corresponding to the n — 1 fundamental cutsets
defined by T is called the fundamental cutset matrix Q ;
of G with respectto 7.

Let by, b2, ..., b,_ denote the branches of 7. Let us
assume that the orientation of a fundamental cutset is cho-
sen s0 as to agree with that of the defining branch. Suppose
we arrange the rows and the columns of @ ; so that the /th
column corresponds to the fundamental cutset defined by
b;. Then the matrix ¢ can be displayed in 4 convenient
form as follows:

Qr=1[U|Qy.]
where {/ is the unit matrix of order # — 1, and its columns
correspend to the branches of T. As an example, the fun-
damental cutset matrix of the graph in Fig. 6 with respect
to the spanning tree T = (ey. €3, €5, €¢) is given below:

€] [4] €5 €g a3 €4 €7

eqfl 0 0 0O -1 -1 -1
e2|0 1 0 0 -1 -1 -1
Qr= .
es|0 0 1 0 0 -1 -1
|0 O 0 1 1 1 0
It is clear that the rank of Oy is n — 1. Hence,

rank(@ ) =n—1

3. Circuit Matrix

Consider a circuit C in a connected directed graph G with
n vertices and m edges. This circuit can be traversed in
one of two directions, clockwise or counterclockwise. The
direction we choose for traversing € is called the orien-
tation of C. If an edge e = (v;, v;) directed from v; to vy
isin C and if v; appears before v; as we traverse C in the
direction specified by the orientation of C, then we say
that the orientation agrees with the orientation of e,

The circuit matrix B, = [b;;] of G has m columns, one
for each edge, and has one row for each circuit in G, The
element b;; is defined as follows:

1, if the jth edge is in the ith circuit
and its orientation agrees
with the circuit orientation

bi; = ¢ —1, if the jth edge is in the ith circuit
and its orientation does not agree
with circuit orientation

@, if the jth edge is not in the ith circuit

The submatrix of B, corresponding to the fundamental
circuits defined by the chords of a spanning tree 7 is called
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the fundamental circuit mairix By of G with respect to the
spanning tree 7.

Let ¢y, €2, €3, ..., Cu—n+1 denote the chords of T. Sup-
pose we arrange the columns and the rows of B so that the
ith row corresponds to the fundamental circuit defined by
the chord ¢; and the ith column corresponds to the chord ¢;
If, in addition, we choose the orientation of a fundamental
circuit to agree with the orientation of the defining chord,
we can write B as:

By =[U L Byl

where U is the unit matrix of order m —»n + 1, and its
columns correspond to the chords of 7.

As an example, the fundamental circuit matrix of the
graph shown in Fig. 6 with respect to the tree T = (g4, 3,
es, g¢) 1s given below:

€3 €3 &7 €] €2 €5 @4

ea[1 001 1 0 -1
Br=es|0 1 0 1 1 1 —1
|0 01 1 1 1 0

Tt is clear from the above that the rank of By ism —n 4 1;
hence,

rank(B.) > m —n + 1.

The following results constitute the foundation of the
graph theoretic application to electrical circuit analysis.

Theorem 4 (orthogonality relationship)

1. A circuit and a cutset in a connected graph have an
even number of common edges.

2. If circuit and a cutset in a directed graph have 24
common edges, then & of these edges have the same rel-
ative orientation in the circuit and the cutset, and the re-
maining & edges have one orientation in the circuit and the
oppostite orientation in the cutset.

Theorem 5

If the columns of the circuit matrix B, and the columns
of the cut matrix @, are arranged in the same edge order,
then

B.O, = 0
Theorem 6
Rank(8.)=m —n—+ 1 and rank(Q,)=n — 1.

Note that it follows from the above theorem that the rank
of the circuit matrix is equal to the nullity of the graph,
and the rank of the cut matrix is equal to the rank of the
graph. This result, in fact, motivated the definitions of the
rank and nullity of a graph
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FIGURE 7 A network element with reference convention.

Il. GRAPHS AND ELECTRICAL
NETWORKS

An electrical network is an interconnection of electrical
network elements such as resistances, capacitances, induc-
tances, voltage and current sources, etc, Bach network ele-
ment is associated with two variables, the voltage variable,
v(t) and the current variable £(r). We also assign reference
directions to the network clements (see Fig. 7} so that i(¢)
is positive whenever the current is in the direction of the
arrow, and v{t) is positive whenever the voltage drop in the
network ¢lement 1s in the direction of the arrow. Replac-
ing each element and its associated reference direction by
a directed edge results in the directed graph representing
the network. For example, a simple electrical network and
the comresponding directed graph are shown in Fig. 8.
The physical relationship between the current and volt-
age variables of network elements is specified by Ohm’s
law. For voltage and current sources, the voltage and cur-
reni variables are required to have specified values. The
linear dependence among the voltage variables in the net-
work and the linear dependence among the current vari-
ables are governed by Kirchoff’s voltage and current laws.

Kirchofi’s Voltage Law (KVL): The algebraic sum of
the voltages around any circuit is equal to zero.,

Kirchoff’s Current Law (KCL): The algebraic sum of
the currents flowing out of a node is equal to zero.

As an example, the KVL equation for the circuit 1,3, 5
and the KCL equation for vertex b in the graph of Fig. 8 and

Circnit 1,3, 5
Vertex &

At uvs=0
—f +iy+iz=0
It can be casily seen that KVL and KCL equations for an
clectrical network N can be conveniently written as:
Ad. =0
and
B.V,= 0
where A, and B, are, respectively, the incidence and circuit
matrices of the directed graph representing N; I, and V,
are, respectively, the column vectors of element currents

and voltages in N. Because each row in the cut matrix Q.
can be expressed as a linear combination of the rows of
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the matrix, in the above we can replace A, by @.; thus,
we have

KCL: Q.L =0
KVL: B.V.=0

Thus, KCL can also be stated as: The algebraic sum of the
cutrents in any cut of ¥ is equal to zero.

If a network N has n vertices and m elements and its
graph is connected, then there are only (n — 1) linearly
independent cuts and only (2 — n + 1) linearly indepen-
dent circuits, Thus, in writing KVL and KCL equations we
need to use only B, a fundamental circuit matrix, and @,
a fundamental circuit matrix, respectively. Thus, we have

KCL: Q. =0
KVL: B;V,=0

We note that the KCL and KVL equations depend only
on the way network elements are interconnected and
not on the nature of the network elements. Thus, several
results in electrical network theory are essentially graph
theoretic in nature. Some results of interest in electrical
network analysis are presented in the reminder of this
chapter. In the following, a network N and its directed
graph representation are both denoted by V.

Loop and Cutset Transformations

Let 7' be a spanning tree of an electrical network. Let [,
and V; be the column vectors of chord currents and branch
currents with respectto 7.

1. Loop transformation:

2. Cutset transformation:
Ve = Qr;V:
If, in the cutset transformation, we replace ¢ s by the

reduced incidence matrix A, then we get the node trans-
Jormation given below:

L3
FIGURE 8 (a) An electrical network N; (b) directed graph representation of N.

V.= A"V,

where the elements in the vector V, can be interpreted
as the voltages of the nodes with respect to the reference
node r. ( Note; the matrix A does not contain the row
corresponding to the node r.)

The abave transformations have been extensively em-
ployed in developing different methods of network analy-
sis. Two of these methods are described in the following.

lll. LOOP AND CUTSET SYSTEMS
OF EQUATIONS

As we observed earlier, the problem of network analy-
sis is to determine the voltages and currents associated
with the elements of an electrical network. These voltages
and currents can be determined from Kirchoft’s equations
and the element voltage—current (in short, v — ) relations
given by Ohm’s law. However, these equations involve
a a large number of variables. As can be seen from the
loop and cutset transformations, not all these variables
are independent Furthermore, in place of KCL equations
we can use the loop transformation which invioves only
chord currents as variables. Similarly, KVL equations
can be replaced by the cutset transformation which in-
volves only branch voltage variables. We can take ad-
vantage of these transformations to establish different
sytems of network equations known as the loop and cutset
systems.

In deriving the loop system we use the loop transfor-
mation in place of KCL, and in this case the loop vari-
ables (chord currents) will serve as independent variables.
In deriving the cutset system we use the cutset transfor-
mation in place of KVL, and the cutset variables {tree
branch voltages) will serve as the independent variables
in this case. Consider a connected electrical network N.
We assume that N consists of only resistances (R), ca-
pacitances (), inductances (L) (referred to collectively
as RCL) including mutual inductances, and independent
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voltage and current sources. We also assume that all initial
inductor currents and initial capacitor volatages have been
replaced by appropriate sources. Further, the volatage and
current variables are all Laplace transforms of the complex
frequency variable s. In & there can be no circuit consist-
ing of only independent voltage sources, for, if such a
circuit of sources were present, then by KVL there would
be a linear relationship among the corresponding voltages,
violating the independence of the voltage sources. For the
same reason, in & there can be no cutset consisting of only
independent current sources. So there exists in N a span-
ning trec containing all the voltage sources but not current
sources. Such a tree is the starting point for the develop-
ment of both the loop and cutset systems of equations.

Let T be a spanning tree of the given network such that
T contains all the voltage sources but no current sovrces.
Let us partition the element voltage V, and the element
current vector £, as follows:

Vi h
Vt = V;}. and L; = Ia
Vs Iy

where the subscripts 1, 2, and 3 refer to the vectors corre-
sponding to the current sources, RCL elements, and volt-
age sources, respectively. Let B be the fundamental cir-
cuit matrix of N, and @ ; the fundamental cutset matrix of
N withrespectto 7. Then the KVL and the KCL equations
can written as follows:

V
kvL: B,v,=|¢ B2 Bo VI -0
’ 77* 70 By Bxn a0

Vi

Il

On On 0]

KCL. Q1 =|: L =0

£ Oy QO U Ij

A. Loop Method of Network Analysis

o Step 1: Solve the following for the vector I; (note that
I; is the vector of currents in the nonsource chords of T').

Zify = —ByVi — BpZaBply (1)

where Z, is the impedance matrix of RCL elements and
Z; = By Z3 Byy. Equation (1) is called the loop svstem of
equations.

o Step 2: Calculate J; using:

Iy = B2 + By (2)
then,
Vo=2:5 (3)
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e Step 3: Determine V) and /3 using the following:
V) = —BpV, — BpWa ()]
Iz = Bl + Bnly (5)

Note that /) and V3 have specified values, since they cor-
respond to current and voltage sources, respectively.

B. Cutset Method of Network Analysis

s Step 1: Solve the following for the vector ¥, (note
that V}, is the vector of voltages in the nonsource branches
of T

YWV =—0uh - @nrh0nV, (6)

where Y, is the admittance matrix of 8L elements and
¥, = Q12Y> Q2. Equation (6) is called the cutser svstem
of equations.

» Step 2: Calculate V; using:

Vi=Qi2Ve + OnVs (N
then,
L =1nhh (8)
e Step 3: Determine V) and I3 vsing the following:

Vi=QuVe+ @nls (%

Li==0nh ~ @unh (10)

Note that f; and V5 have specified values, since they cor-
respond te current and voltage sources.

This completes the cutset method of network analysis.
Next we illustrate the loop and cutset methods of analysis
on the network shown in Fig. 9. The graph of the network is
shown Fig. 9b. We choose the spanning tree T consisting
of edges 4, 5, and 6. Note that 7 contains the voltage
source and has no current source. The fundamental circuit
and the fundamenta) cutset matrices with respect to T are
given below in the required partioned form:

1 23 4 5 &6
1|00—|—11

Bp=|1| 10 1 0 -l
ol o1 1 -1 0
1 2 3456
1] =1 1100

G| 1| B 10
1] 1 00 0 I
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FIGURE 8 A network and its graph.
From these matrices we get: C. Loop Method Example
B = [0 0 -1 —'l] Edges 2 and 3 are nonsource chords. So,

Bz = 1] I [52}
i = |z
0 1 0 I3
By = ]

01 —-1 -1 Substituting
(—1 Zy = BpZyBy,
By =
| 0 4 -1
1 -1 3
Q= o ] in Eq. {1), we get the following loop system of equations:
0:=[3 141 I Y
Tlo 1 o1 -1 3 ||li] " [-2
O = [—1] Solving for i; and i3, we get:
On=[1 0 0 (] fx=|:1.2=1,/11|:!51|
We also have = B
3 0 0 0 Using Eq. (2), we get:
Z, = ¢ 1 00 B3 7
001t 0 LY B B
0 0 0 1 =5y =R 1
1/3 0 0 0 is ] =&
0 1L 0 0 Then, using ¥, = Z; 1, we get:
Y. = _
*“lo o010 v 21
¢ 0 0 1 _s
i Vo | 2| =41
Vg = 2 volts Vg 1
i} = I ampere | Vs —6




Civcuit Theory

Finally, from Eqgs. (4) and {5) we get:
V) =[v] =-27/11
I =[] =4/11
D. Cutset Method Example

Edges 4 and 3 are the nonsource branches, so:

o[
[ ]

in Eq. (6), we get the following cutset system of equations:

73 K [w]  [-173
=[] [5]

Solving for V.

i | o Lo [ 2
b= Uj_f _*-6

From Eq. (7) we get:

Substituting

1y} _21
3 -5
Vo = =1/11
Yy 1
s _-~6
Using
=YV,
we get:
iz 7
iy —5
L=]|"|=1/11
14 1
is —6

Finally, using Eqs. (9} and (10},
Vi=[wn]=-27/11
Iy = [ig] = 4/11

This completes our itlustration of the loop and cutset meth-
ods of circuit analysis.

Suppose a network N has no independent voltage
sources. Then a convenient description of & with the node
voltages as independent variables can be obtained as fol-
lows. Let A be the incidence matrix of N with vertex v, as
reference. Let us also partition Aas A =[4,, A2], where
the columns of A and A, correspond, respectively, tothe
RCL elements and current sources. If f; and [ denote
the column vectors of RCL element currents and current
source currents, then KCL equations for & become;

841

Ay = —Anph
‘We also have
H =W

where V; is the column vector of voltages of RCL
elements and ¥ is the corresponding admittance matrix.
Furthermore, by the node transformation we have:

VI o Al]lvn

where V,, is the column vector of node voltages. So, we
get from the KCL equations:

(AuhA )V, = —Aph

The above equations are called node equations. The matrix
A Yy AY is called the node admirtance matrix of N.

FURTHER READING

For s more comprehensive discussion of other devel-
opments in graph theoretic concepts, please consult
Chen (1972, 2001), Swamy and Thulasiraman (1981),
and Watanabe and Shinoda (1999). For a very good
treatment of liner circuits and other releated references,
see Balabanian and Bickart (1981). Mitra (1974) provides
a very good early work on active networks, while Chua
et al. (1987) and Hasler and Neirynck (1986) are good
sources for nonlinear network theory.

SEE ALSO THE FOLLOWING ARTICLES

ANALOG-SIGNAL ELECTRONIC CIRCUITS o DIGITAL
ELECTRONIC CIRCUITS » ELECTROMAGNETICS o GRAPH
THEORY » KALMAN FILTERS AND NONLINEAR FILTERS
» NETWORKS FOR DATA COMMUNICATION ¢ POWER
ELECTRONICS
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