

Topic 10-1-1: What is phasor?

DR CAN DING

Lecturer can.ding@uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F

10-1-1 WHAT IS PHASOR

A sinusoidal waveform $V(t) = V_m \cos(\omega t + \theta)$ can be generated by rotating a vector (complex number **X**) in the complex plane and take its projection on the real axis.

 $V(t) = V_m cos(\omega t + \theta)$ This is the time domain representation of the waveform.

 $X = V_m e^{j\theta}$

This is the phasor, the frequency domain representation, of the waveform.

By rotating the vector **X**, we multiply **X** with $e^{j\omega t}$

$$Xe^{j\omega t} = V_m e^{j\theta} e^{j\omega t} = V_m e^{j(\omega t + \theta)} = V_m \cos(\omega t + \theta) + jV_m \sin(\omega t + \theta)$$

 $e^{j\omega t}$ determines how fast we rotate the vector and how fast the wave travels.

For the phasors, **the frequency part e^{jwt} is omitted** as the force function (input) and the resultant response (output) will always have the same frequency in a **linear** circuit.

10-1-1 WHAT IS PHASOR

Definition of phasors: phasors are complex numbers that represent sinusoidally varying currents or voltages. The magnitude of a phasor equals the peak value of the waveform and the angle equals the phase of the waveform (in cosine convention).

Waveforms

 $V_1(t) = V_1 \cos(\omega t + \theta_1)$ $V_2(t) = V_2 \sin(\omega t + \theta_2)$ $= V_2 \cos(\omega t + (\theta_2 - 90^0))$

Don't forget to always convert sin to cosin!!

Phasors

 $V_1 \ge \theta_1 = V_1 e^{j\theta_1}$

 $V_2 \swarrow (\theta_2 - 90^0) = V_2 e^{j\theta_2}$

<u>5111</u>		(wt + v) - tvs
$\mathbf{X} = X_m \angle \phi$	polar form	
$\mathbf{X} = X_m e^{j\phi}$	exponential form	Four forms of
$\mathbf{X} = X_m (\cos \phi + j \sin \phi)$	trigonometric form	
$\mathbf{X} = a + jb$	rectangular form	

 $\underline{\sin(\omega t + \theta)} = \underline{\cos(\omega t + \theta - 90^{0})}$

f phasor

Topic 10-1-2: Why use phasors?

DR CAN DING

Lecturer can.ding@uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F

10-1-2 WHY USE PHASORS?

Why use phasors?

For the ease of calculations when analysing AC circuits.

Waveform (time-domain) Phasors (frequency-domain)

 $V_1(t) = V_1 \cos(\omega t + \theta_1)$

 $V_1 \ge \theta_1 = V_1 e^{j\theta_1} = V_1 cos\theta_1 + jV_1 sin\theta_1$

By convert the waveforms (time-variant functions) to phasors (fixed complex numbers), the calculation is much easier.

Is it correct to use phasors to replacing waveforms?

The additional imaginary part in phasor will not cause incorrectness because *imaginary input always leads to imaginary output in a linear system*. And by converting phasor back to waveform, the imaginary part is removed.

The frequency part e^{jwt} is omitted but it will not change the results. Since this is a linear circuit, if the input is multiplied by this e^{jwt} , the output is also multiplied by it as this is a linear circuit. So we can simply add this timevariant characteristic after the phasor calculation.

LTI: linear time-invariant

Topic 10-1-3: How to use phasors?

DR CAN DING

Lecturer can.ding@uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F

10-1-3 HOW TO USE PHASORS?

By using the phasor technique, the analysis is simplified.

Assume we have two waveforms

 $V_1(t) = V_{1m}\cos(\omega t + \theta_1)$ $V_2(t) = V_{2m}\cos(\omega t + \theta_2)$

If they are in phase, i.e., $\theta_1 = \theta_2$

What if they are not in phase, i.e., $\theta_1 \neq \theta_2$

 $V_1(t) + V_2(t) = ?$

By convert the waveforms (time-variant function) to phasors (complex numbers), the calculation is much easier.

10-1-3 HOW TO USE PHASORS?

Example: determine the waveform of $V_3(t) = V_1(t) + V_2(t)$

 $V_1(t) = 20\cos(\omega t - 45^0)$, $V_2(t) = 10\cos(\omega t - 30^0)$

Calculation procedure:

Step 1: convert waveform to phasor, make sure the waveform must be a cosine.

 $V_1(t) = 20 \angle -45^0 = 20e^{-j45^0}$ Either polar form or $V_2(t) = 10 \angle -30^0 = 10e^{-j30^0}$ exponential form is ok

Step 2: convert polar form (exponential form) phasor to rectangular form because this form is easier to "add."

$$V_1(t) = 20\cos(-45^{\circ}) + j20\sin(-45^{\circ})$$

= 20\cos(45^{\eta}) - j20\sin(45^{\eta})
= 20\times 0.707 - j20\times 0.707 = 14.14 - j14.14
$$V_2(t) = 10\cos(-30^{\circ}) + j10\sin(-30^{\circ})$$

= 10\cos(30^{\eta}) - j10\sin(30^{\eta})
= 10\times 0.866 - j10\times 0.5 = 8.66 - j5

Step 3: Add the two phasors (complex numbers) in rectangular form.

 $V_1(t) + V_2(t) = 14.14 - j14.14 + 8.66 - j5$

= 22.8 - j19.4Step 4: Convert the rectangular form phasor to polar/exponential form.

$$V_{1}(t) + V_{2}(t) = r \ge \theta = re^{\theta}$$

$$r = \sqrt{a^{2} + b^{2}} = \sqrt{22.8^{2} + 19.4^{2}} = 29.93$$

$$\theta = \arctan \frac{b}{a} = \arctan \frac{-19.4}{22.8} = -40.4^{0}?$$

Check whether the phase is correct using complex plane

Since a > 0, b < 0, the phasor locates in the 4th quadrant, the result -40.4° is correct.

Step 5: Convert the polar/exponential form phasor to waveform.

 $V_3(t) = 29.93\cos(\omega t - 40.4^0)$

The frequency remains the same.

Topic 10-2-1: Phasors for R, L and C

DR CAN DING

Lecturer can.ding@uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F

From time-domain to frequency-domain, (AC sources) sinusoidal waveforms coverts to phasors, and time-variant functions are replaced by complex numbers.

To analyse a circuit in frequency-domain, we also need to convert the components R, L and C into phasors. The phasors for R, L and C are also be complex numbers.

How to find the phasors for R, L, C?

The phasors for the components are determined by their V/I characteristics.

Phasor for R:

Assuming there is a voltage source of $V(t) = V_m \cos(\omega t + \theta)$ applied on a resistor R, find the current I(t)

V-I characteristic of RTime domain:Frequency domain $I = \frac{V}{R}$ $V(t) = V_m \cos(\omega t + \theta)$ $V_R = V_m e^{j\theta}$ $R = \frac{V}{I}$ $I(t) = \frac{V(t)}{R} = \frac{V_m}{R} \cos(\omega t + \theta)$ $I_R = \frac{V_m}{R} e^{j\theta}$ $R = \frac{V_R}{I}$ $R = \frac{V_R}{I_R} = Re^{j\theta} = R$

How to find the phasors for R, L, C?

The phasors for the components are determined by their V/I characteristics.

Phasor for C:

Assuming there is a voltage source of $V(t) = V_m \cos(\omega t + \theta)$ applied on a capacitor C, find the current I(t)

V-I characteristic of C

 $I(t) = C \frac{dV(t)}{dt}$ $V(t) = \frac{1}{C} \int_{t_0}^{t} i(t)dt + V(t_0)$

Time domain:

 $V(t) = V_m \cos(\omega t + \theta)$ $I(t) = C \frac{dV(t)}{dt}$ $= C \frac{d[V_m \cos(\omega t + \theta)]}{dt}$ $= CV_m(-\omega)\sin(\omega t + \theta)$ $= -\omega CV_m \cos(\omega t + \theta - 90^0)$ $= \omega CV_m \cos(\omega t + \theta - 90^0 + 180^0)$ $= \omega CV_m \cos(\omega t + (\theta + 90^0))$

Frequency domain

 $V_{C} = V_{m}e^{j\theta}$

 $I_{C} = \omega C V_{m} e^{j(\theta + 90^{0})}$ $C = \frac{V_{C}}{I_{C}} = \frac{1}{\omega C} e^{-j90^{0}}$ $= -j \frac{1}{\omega C}$

How to find the phasors for R, L, C?

The phasors for the components are determined by their V/I characteristics.

Phasor for L:

Assuming there is a current of $I(t) = I_m \cos(\omega t + \theta)$ flowing through an inductor of L

V-I characteristic of L

 $V(t) = L \frac{dI(t)}{dt}$ $I(t) = \frac{1}{L} \int_{t_0}^t V(t) dt + I(t_0)$

Time domain:

 $I(t) = I_m \cos(\omega t + \theta)$ dI(t)

$$V(t) = L \frac{dI(t)}{dt}$$
$$= L \frac{d[I_m \cos(\omega t + \theta)]}{dt}$$
$$= LI_m(-\omega)\sin(\omega t + \theta)$$
$$= -\omega LI_m \cos(\omega t + \theta - 90^0)$$

 $= \omega LI_m \cos(\omega t + \theta - 90^0 + 180^0)$ $= \omega LI_m \cos(\omega t + (\theta + 90^0))$

Frequency domain

 $V_{L} = \omega L I_{m} e^{j(\theta + 90^{0})}$ $I_{L} = I_{m} e^{j\theta}$ $L = \frac{V_{L}}{I_{L}} = \omega L e^{j90^{0}}$ $= j\omega L$

Phasor for R, L, and C

$$R = \frac{V_R}{I_R} = Re^{j0} = R$$

In frequency domain, resistor **R** is still R.

In frequency domain, inductor **L** is changes to $j\omega L$.

In frequency domain, capacitor **C** is changes to $-j\frac{1}{\omega C}$.

Topic 10-2-2: Complex impedance

DR CAN DING

Lecturer can.ding@uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F

₹0-2-2 COMPLEX IMPEDANCE

In frequency domain, all the three components have linear V-I characteristics.

The differential and integral operations are simplified to division and multiplication operations.

The phasor of inductor and capacitor behaves like a "imaginary resistor" in frequency domain.

10-2-2 COMPLEX IMPEDANCE

The phasors of R, L and C can be jointly called impedance. Impedance is a complex version of loads (resistance, capacitance and inductance). It describes a measure of opposition to AC voltages and currents. Impedances are complex and they have amplitude and phases. Z = V / I Real Part Resistance R Reactance *j*X (capacitance or inductance) $Z = R + j X = \frac{V \ge \theta_v}{I \ge \theta_v}$ (Ohm) Imaginary Part For resistor R For capacitor C For inductance L $Z_C = -j\frac{1}{\omega C} = 0 - j\frac{1}{\omega C}$ $\frac{1}{\omega C} \ge -90^0$ $\frac{1}{\omega C} e^{-j90^0}$ Retangular $Z_R = R = R + j0$ $Z_L = j\omega L = 0 + j\omega L$ $\omega L \swarrow 90^0$ $R \ge 0^0$ Polar Re^{j0^0} Exponential ωLe^{j90^0} Impedances can be combined and manipulated like resistors except we use complex algebra. All the rules apply for resistance in time domain apply for impedance in frequency domain.

Topic 10-2-3: Example of complex impedance

DR CAN DING

Lecturer can.ding@uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F

-2-3 COMPLEX IMPEDANCE EXAM

5TT

Example 1:

What's the impedance of this circuit when $\omega = 10^4$ and $\omega = 5000$

The impedance ir frequency ω

When $\omega = 10^4$, When $\omega = 5000$, $Z_{I} = j\omega L = j(10^{4} \times 5 \times 10^{-3})$ $Z_L = j\omega L = j(5000 \times 5 \times 10^{-3})$ = i50= j25 $Z_C = -j \frac{1}{\omega C} = -j \frac{1}{10^4 \times 100 \times 10^{-6}}$ $Z_C = -j\frac{1}{\omega C} = -j\frac{1}{5000 \times 100 \times 10^{-6}}$ = -i2= -j1j49 Ω $Z_{eq} = Z_C + Z_L = j49$ $Z_{eq} = Z_C + Z_L = j23$

100 µF

〒0-2-3 COMPLEX IMPEDANCE EXAMPLE

Example 2:

What's the impedance of this circuit when $\omega = 4$

Series connection of R and C

$$Z_R = 20$$

$$Z_L = j\omega L = j(4 \times 5) = j20$$

$$Z_{eq} = Z_R + Z_L = 20 + j20$$

Example 3:

What's the impedance of this circuit when $\omega = 4$

Parallel connection of R and C

$$Z_R = 20 \qquad \qquad \frac{1}{Z_{eq}} = \frac{1}{Z_L} + \frac{1}{Z_R}$$
$$Z_L = j\omega L = j20 \qquad \qquad \frac{1}{Z_{eq}} = \frac{1}{Z_L} + \frac{1}{Z_R}$$
$$Z_{eq} = \frac{Z_R Z_L}{Z_R + Z_L} = \frac{20 \times j20}{20 + j20} = \frac{j20}{(1+j)} = \frac{j20 \times (1-j)}{(1+j) \times (1-j)}$$
$$= \frac{j20 + 20}{1+1} = 10 + j10$$

 $Z_{R} = R$ $Z_{L} = j\omega L$ $Z_{C} = -j\frac{1}{\omega C}$