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Abstract

The two special functions known as the gamma function and

the Riemann zeta function are both functions initially de�ned

through a relatively simple rule (the gamma function de�ned as

an integral and the Riemann zeta function as a sum) on a half-

plane of the complex plane. Then, analytic continuation is used

in order to derive the rest of the functions. This paper explores

how these analytic continuations come about, as well as various

interesting properties and values of the complete gamma and

Riemann zeta functions.
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Foreword

This article assumesmathematical knowledge at roughly a third-

year undergraduate level. In particular, the use of calculus and

complex analysis will be extensive. It would be quite helpful to

have read themajority of [6] or an equivalent textbook (in partic-

ular, subjects such as di�erential and integral calculus as well as

in�nite sums should be understood well), as well as up to chapter

three of [3] (in particular, subjects such as complex integration

and what it means for a function to be analytic or meromorphic

will be used). A corollary of various integration tests from [6] that

will be used but may not be immediately obvious will be stated

and proved here.

Lemma 0.1. Let I ∈ R be an interval. As well, let f : I → R. Suppose

∫
I

(f(x)) dx absolutely converges.

Suppose that g : I → R and that there existsM > 0 such that for all x ∈ I,
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|g(x)| ≤M . Then, ∫
I

(f(x)g(x)) dx converges.

Proof. It should be noted that if

∫
I

(f(x)) dx abslutely converges, then

M

∫
I

(f(x)) dx absolutely converges.

Thus, as a constant outside of an integral may be made part of

an integrand,

M

∫
I

|f(x)| dx =

∫
I

|Mf | dx >
∣∣∣∣∫
I

(f(x)g(x)) dx

∣∣∣∣ .
Thus, ∫

I

(f(x)g(x)) dx converges.

Fourier series will be used, so one should have at least cursory

knowledge of what a Fourier series is. They are brie�y men-

tioned in textbooks such as [7].

As well, there is a bit of custom notation that will be used in this

article. First, here are the notations used for various integer sub-
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sets, and then an ease-of-writing notation will be introduced:

Z+ = {1, 2, 3, . . . } = {n ∈ Z | n > 0};

Z− = {−1,−2,−3, . . . } = {n ∈ Z | n < 0};

N = {0, 1, 2, . . . } = {n ∈ Z | n ≥ 0};

N− = {0,−1,−2, . . . } = {n ∈ Z | n ≤ 0}.

Notation0.1. LetΛ ⊆ R. Denote the portion of the complex plane

such that all numbers therein have real part within Λ by

RΛ = {z ∈ C | Re(z) ∈ Λ}. (1)

For example, R[0, 4) = {z ∈ C | Re(z) ∈ [0, 4)}.

This article is meant to be a compendium of sorts, cataloguing

various properties of the two special functions named in the title

as well as how the two seemingly unrelated functions are inter-

twined.
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Chapter 1

The Gamma Function

1.1 Analytic Continuation

There exist many complex functions whose domains are, in a

sense, not as large as they could be. For an example, let the set

S = {z ∈ C | |z| < 1} be the open unit disc in the complex plane,

and let f : S → C be de�ned by

f(z) =
z

2
.

Obviously, there exist z ∈ C such that z /∈ S (as an example, z = 5),

so the domain of f could potentially be “extended” to include

more values.

There are an uncountably in�nite number of ways to extend this
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function to a larger domain. Two such ways shall be given in the

form of g : C→ C and h : C→ C, de�ned by

g(z) =
z

2
;

h(z) =


z

2
, |z| < 1

z + 1 , |z| ≥ 1.

When |z| < 1, g(z) = h(z) = f(z), so both g and h “extend” f to

a larger domain (said larger domain being all of C); however,

g seems to be a more “natural” �t. For this example, it can be

chalked down to g simply being de�ned by the same elemen-

tary function, but it would be useful to have a way to determine

if one method of extending a function is “better” than another

using precise language.

One thing that di�erentiates g from h is that g is an analytic func-

tion, whereas h is not, as h(z) is discontinuous wherever |z| = 1.

This property thus motivates the study of what is known as ana-

lytic continuation.

De�nition 1.1 (Analytic Continuation). Let Uf ⊆ C and Ug ⊆ C be

open and connected, with Uf ∩Ug 6= ∅. Let f : Uf → C and g : Ug → C

be analytic. Then, g is an analytic continuation of f on Ug if for

all z ∈ Uf ∩ Ug, g(z) = f(z). [4]
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This de�nition of analytic continuation is in a sense too broad,

as the only analytic continuation that will be done in this article

will be from a set to a superset of said set, but it is useful to use

already-established conditions.

Analytic continuation provides a “natural” method of extending

functions beyond their original domains. In the above example,

g is an analytic continuation of f on C, whereas h is not. Analytic

continuation is used in order to de�ne both the gamma function

and the Riemann zeta function.

1.2 Deriving the Gamma Function

The gamma function is a function de�ned on the open half-

planewith positive real part (i.e.,R(0,∞)) by an integral expresion

and everywhere else (save the nonpositive integers) through an-

alytic continuation. Before studying the function in detail, it is

useful to note a few things about a particular integral.

Lemma 1.1. For all z ∈ R(0,∞),

∫ ∞
0

(
e(−t)t(z−1)

)
dt converges.
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Proof. Suppose z > 0. Then, the integral can be decomposed as

follows:

∫ ∞
0

(
e(−t)t(z−1)

)
dt =

∫ 1

0

(
e(−t)t(z−1)

)
dt+

∫ ∞
1

(
e(−t)t(z−1)

)
dt. (1.1)

The exponential function has more e�ect on convergence than

any power function, so the second term in the righthand side of

(1.1) converges, and for all t ∈ (0, 1),
∣∣e(−t)∣∣ < 1, so, by Lemma 0.1,

∫ ∞
0

(
e(−t)t(z−1)

)
dt coverges if

∫ 1

0

(
t(z−1)

)
dt converges,

which it does.

Suppose more generally that z ∈ R(0,∞). Let x ∈ R and y ∈ R,

where z = x+ iy. Then, the integral becomes

∫ ∞
0

(
e(−t)t(x+iy−1)

)
dt =

∫ ∞
0

(
e(−t)t(x−1)tiy

)
dt

=

∫ ∞
0

(
e(−t)t(x−1)e(iy ln(|t|))

)
dt

=

∫ ∞
0

(
e(−t)t(x−1)(e(iy))(ln(|t|)

)
dt.

Examining the absolute value of the integral, and noting that, for

any positive t,
∣∣(e(iy))∣∣(ln(|t|)) = 1(ln(|t|)) = 1, and that t, e(−t), and t(x−1)

9



are all positive quantites, leads to the following result:

∣∣∣∣∫ ∞
0

(
e(−t)t(x+iy−1)

)
dt

∣∣∣∣ ≤ ∫ ∞
0

(∣∣e(−t)t(x−1)∣∣) dt =

∫ ∞
0

(
e(−t)t(x−1)

)
dt.

Therefore, whenever the integral de�ned by real x converges, so

will the integral de�ned by complex z. As proved, this occurs

whenever x > 0, so it occurs whenever z ∈ R(0,∞).

This integral is the crux of the gamma function, though before

the true gamma function is de�ned it may be used to de�ne (in

what is admittedly not standard practice) what this article shall

call the pre-gamma function. Typically (see [3], [4], [5], etc.) this

“pre-gamma” function is simply called the gamma function, but

for the sake of not having to rede�ne what exactly the gamma

function is post-continuation, this name will be used.

De�nition 1.2 (Pre-gamma function). Let Γ0 : R(0,∞)→ C be de-

�ned by

Γ0(z) =

∫ ∞
0

(
e(−t)t(z−1)

)
dt. (1.2)

Then, Γ0 is the pre-gamma function. [3]

A cursory plot of the pre-gamma function on the real axis (Figure

1.1) seems to indicate that as z → 0 from the positive real axis,

|Γ0(z)| → ∞. However, another cursory plot on the ray one unit
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Figure 1.1: Γ0(z) for z ∈ (0, 5]

above the positive real axis (as in, {x+ i | x > 0}) (Figure 1.2) shows

no such tendency in the case that z → i along the ray.

By Lemma 1.1, the integral de�nition of the pre-gamma func-

tion is well-de�ned, as the integral de�ning Γ0(z) converges for all

z ∈ R(0,∞). However, this only de�nes a function with a domain

consisting of a half-plane. Thus, an attempt is made to use ana-

lytic continuation to �nd a larger domain for this function. The

�gures seem to indicate that any well-de�ned analytic continu-

ation of Γ0(z) will have a nonremovable singularity when z = 0,

but that there need not be a singularity at, for example, z = 1 + i.

This analysis will turn out to be true.

That Γ0 is analytic at all is something that, unfortunately, will not
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Figure 1.2: Γ0(z) for z = x + i, where x ∈ (0, 4], Re(Γ0(z)) is given in
green, Im(Γ0(z)) in blue

be proved in this article, though a proof is outlined in [3] for

instance , utilizing what is known asMorera’s theorem. However,

if it is assumed that Γ0 is analytic, analytic continuation may be

used to get a larger domain for the function by �rst proving a

relation.

Lemma 1.2. For all z ∈ R(0,∞),

Γ0(z) =
Γ0(z + 1)

z
. (1.3)

Proof. Using integration by parts on (1.2), it can then be seen that

12



for all z ∈ R(0,∞),

Γ0(z) =

(
e(−t)

(
tz

z

)∣∣∣∣t=∞
t=0

−
∫ ∞
0

(
−e(−t)

(
tz

z

))
dt.

The boundary term is equal to 0 (as both limits are zero), so this

reduces to

Γ0(z) =

∫ ∞
0

(
e(−t)tz

)
dt

z
=

Γ0(z + 1)

z
. [3]

Now that this relation has been found for the pre-gamma func-

tion’s arguments, it is reasonable to conclude that the relation

would continue to be true for the “actual” gamma function’s ar-

guments, as well. As an example, consider Γ1 : R(−1,∞)\{0} → C

de�ned by

Γ1(z) =


Γ0(z) , z ∈ R(0,∞)

Γ0(z + 1)

z
, z ∈ R(−1, 0].

This function holds the property that the pre-gamma function

holds, in that

Γ1(z) =
Γ1(z + 1)

z
,

as anywhere within the domain of Γ0, it can be seen that both

Γ1(z) = Γ0(z) and Γ1(z+ 1) = Γ0(z+ 1), and outside of the domain of
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Γ0 butwithin the domain of Γ1, it is still true that Γ1(z+1) = Γ0(z+1),

so the de�nition of Γ1 reduces to the aforementioned relation

there.

Thus, Γ1 is a function that holds the same property that Γ0 does.

Unfortunately, the domain of Γ1 does not include 0, as the rela-

tion would turn into a division by zero. This is not a removable

singularity and, as will be seen, corresponds to a pole.

Now, moving from Γ0 to Γ1 expanded the domain of the pre-

gamma function from R(0,∞) to R(−1,∞)\{0}, so the domain of

the pre-gamma function has been shifted to the left by one (with

an isolated singularity added to the mix). There is no reason to

simply stop, however, as the domain can be shifted to the left

by one once again by applying the recursive de�nition again to

all elements of R(−2, 1]\{1}, where once again there will be a new

pole (this time at 1), as otherwise the recursive de�nition would

require knowing the value of Γ1(z) at z = 0, where it is not de�ned.

Thus, using the recursive relation repeatedly to continue shift-

ing the domain of the pre-gamma function, the �nal result is as

follows.
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De�nition 1.3 (Gamma function). Let Γ : C\N− → C be de�ned by

Γ(z) =


Γ0(z) , z ∈ R(0,∞)

Γ0(z + n)∏n−1
j=0 (z + j)

, ∃n ∈ Z+ such that z ∈ R(−n,−n+ 1].

(1.4)

Then, Γ is called the gamma function. [5]

It is worth noting that this is, in a sense, a nonstandard de�-

nition (or, at least, a di�erent de�nition than that given by all

the sources) for the “full” gamma function, however [5] makes

a point of noting that the relation used to derive this holds for

their de�nition of the gamma function and, given the same def-

inition of Γ0, this is the unique analytic continuation that holds

that property, so this de�nition must be equivalent.

The gamma function shows up occasionally in a few di�erent

areas. One such area in in probability, in what is known as the

gamma distribution. [2]

Once again, that Γ is an analytic functionwill have to be assumed;

however, that it happens to (by de�nition and recursion) have the

exact same relationship that Γ0 has, namely:

Γ(z) =
Γ(z + 1)

z
, (1.5)
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shows that it must be intimately related to the pre-gamma func-

tion, so to claim that this must be an analytic continuation of the

other (note that if it is analytic it �ts the bill for an analytic con-

tinuation) is not too far-fetched.

1.3 Properties of the Gamma Function

There are multiple properties of the gamma function that are

worth mentioning, some of them useful in examining the Rie-

mann zeta function (believe it or not) and others as simple cu-

riosities. They will be examined in this section.

Lemma 1.3. For all z ∈ C\Z,

Γ(z)Γ(1− z) =
π

sin(πz)
. [3] (1.6)

Theproof of this relation is beyond the scope of this paper, though

it is outlined in [3] as an exercise; it involves usingwhat the source

refers to as the beta function. This relation, however, can be used

to prove a few other properties of the gamma function. For ex-

ample, in the case that z = 1
2
,

Γ

(
1

2

)
Γ

(
1− 1

2

)
=

π

sin
(
π
2

) , so Γ2

(
1

2

)
= π.
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Thus,

Γ

(
1

2

)
=
√
π. [3] (1.7)

It is, of course, possible to compute values of Γ(z) directly from

the integral equation de�nition. For example,

Γ(1) =

∫ ∞
0

(
e(−t)t(1−1)

)
dt

=

∫ ∞
0

(
e(−t)

)
dt

= −
(
e(−t)

∣∣∞
0

= 1.

Thus, writing it in a seemingly odd way,

Γ(1) = 0!. (1.8)

In fact, there is a deep connection between the gamma function

and the factorial function.

Theorem 1.1. For all n ∈ Z+,

Γ(n) = (n− 1)!. (1.9)

Proof. By (1.8), Γ(1) = 0!, so Γ(1) = (1− 1)!.
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Suppose that j ∈ Z+\{1} and that Γ(j) = (j − 1)!. By (1.5),

Γ(j) =
Γ(j + 1)

j
, so

Γ(j + 1) = jΓ(j) = j(j − 1)! = j!.

Thus, by induction, for all n ∈ Z+,

Γ(n) = (n− 1)!. [4]

Combining Lemma 1.3 and Theorem 1.1, something about the

gamma function that will be important when examining the Rie-

mann zeta function comes to light.

Theorem 1.2. For all z ∈ C\N−,

Γ(z) 6= 0. (1.10)

Proof. Suppose z ∈ Z+. Then, by Theorem 1.1,

Γ(z) = (z − 1)! 6= 0.
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Suppose, instead, that z ∈ C\Z. Then, by Lemma 1.3,

Γ(z) =
π

Γ(1− z) sin(πz)
6= 0.

Thus, the gamma function is nowhere zero, as those two sets en-

compass the entirety of the gamma function’s domain. [5]

Another fact about the gamma function, which seems like a strange

thing to note, will also come in handy when examining the Rie-

mann zeta function. It is actually used in [8] when deriving the

analytic continuation of the Riemann zeta function, though it is

used without proof or explicitly stating that it is being used.

Lemma 1.4. For all z ∈ R(−1, 0),

Γ(−z) sin
(πz

2

)
= −

∫ ∞
0

(
t(−1−z) sin (t)

)
dt. (1.11)

This, too, shall be, unfortunately, given without proof.

Finally, as one last curiosity, onemaydetermine the general char-

acter of Γ over the complex plane.

Theorem 1.3. Γ is meromorphic on C, with poles at each nonpositive

integer of order 1. Furthermore, if R : N → C is de�ned such that R(n)
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is the residue of the pole of Γ(z) at z = −n, then

R(n) =
(−1)n

n!
. (1.12)

Proof. Let n ∈ N. When z is near −n,

Γ(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n− 1)(z + n)
.

With that in mind, let H : (C\N−) ∪ {−n} → C be de�ned by

H(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n− 1)
.

Thus, everywhere but at z = −n, H(z) = Γ(z)(z + n). It can be seen

that attempting to let z = −n provides a perfectly working value

for H(z), so the pole at −n must be of order 1. Furthermore, it

will have residue of

R(n) = H(−n) =
Γ(1)

−n(1− n) · · · (−1)
=

(−1)n

n(n− 1) · · · (1)
,

so

R(n) =
(−1)n

n!
. [4]

At �rst, the gamma function may seem completely unrelated to
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the Riemann zeta function (assuming prior familiarity with the

zeta function). However, an intimate knowledge of the gamma

function is actually quite helpful to understanding how the zeta

function works. Figures 1.3 and 1.4 show various properties of

the full gamma function on the complex plane.

Figure 1.3: Γ(z) for z ∈ (−4, 4]\{−3,−2,−1, 0}
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Figure 1.4: |Γ(z)| (cut o� in height for the poles) for z = x + iy,
where (x, y) ∈ ([−3, 3]× [−3, 3])\{(−3, 0), (−2, 0), (−1, 0), (0, 0)}
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Chapter 2

The Riemann Zeta Function

2.1 The First Continuation

The derivation of the gamma function was a particularly use-

ful example of analytic continuation, as the gamma function will

prove useful in this chapter. For now, it is time to consider a par-

tiular sum, which shall form the base upon which the structure

of the Riemann zeta function will be built.

Lemma 2.1. For all s ∈ R(1,∞),

∞∑
n=1

(
1

ns

)
converges.
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Proof. Suppose s > 1. Then, by the integral test,

∞∑
n=1

(
1

ns

)
converges if

∫ ∞
1

(
1

xs

)
dx converges.

As the integral converges whenever s > 1, so does the sum.

Now suppose, more generally, that s ∈ R(1,∞). Let σ ∈ R and let

t ∈ R, where s = σ + it. Then, noting that

|ns| =
∣∣e(s ln(n))∣∣ =

∣∣e((σ+it) ln(n))∣∣ =
∣∣e(σ ln(n))

∣∣ = |nσ| ,

it can be seen that

∣∣∣∣∣
∞∑
n=1

(
1

ns

)∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
n=1

(
1

nσ

)∣∣∣∣∣ ,
so the sum determined by complex s converges whenever the

sumdetermined by real σ converges, which occurswhenever real

σ > 1, or when s ∈ R(1,∞).

In the previous parts of this article, z was used as a sort of general

complex variable (with real part x and imaginary part y). In this

section, when referring to the arguments of the Riemann zeta

function, the complex variable is denoted by s, with real part σ

and imaginary part t.

As with the gamma function, this sum may be used to de�ne a
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function that this article will call the pre-zeta function.

De�nition 2.1 (Pre-zeta function). Let ζ0 : R(1,∞)→ C be de�ned

such that

ζ0(s) =
∞∑
n=1

(
1

ns

)
. (2.1)

Then, ζ0 is the pre-zeta function.

Figures 2.1 and 2.2, indicating plots of the pre-zeta function, show

similar behaviour to how the gamma function behaved previ-

ously. In the case of the gamma function, it was an approach to

the border ofR(0,∞). In the case of the pre-zeta function, it is an

approach to the border of R(1,∞). Thus, a similar expectation of

the ability to analytically continue the function (with a pole at 1)

exists. After analytically continuing it, the properties of this new

“full” zeta function may be studied.

As with the pre-gamma function, the pre-zeta function is more

of a placeholder de�nition forwhat will be the true Riemann zeta

function. In order to analytically continue it past the half-plane

of de�nition, the �rst method mentioned in chapter two of [8]

will be used. In order to use this, it is important to consider the

following summation rule.
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Figure 2.1: ζ0(z) for z ∈ (1, 5]

Figure 2.2: ζ0(z) for z = x + i, where x ∈ (1, 4], Re(ζ0(z)) is given in
green, Im(ζ0(z)) in blue
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Lemma2.2. Let a ∈ R and b ∈ R such that bbc > bac. Let φ : [bac , b]→ C

be continuously di�erentiable on (bac , b). Then,

bbc∑
n=bac+1

(φ (n)) =

∫ b

a

(φ (x)) dx+

∫ b

a

((
x− bxc − 1

2

)
φ′ (x)

)
dx

+

(
a− bac − 1

2

)
φ (a)−

(
b− bbc − 1

2

)
φ (b) .

(2.2)

The skeleton of the proof of this rule is outlined in [8], though

it is tedious and not particularly interesting. However, using this

summation rule, for any s ∈ R(1,∞) and b ∈ Z+\{1},

bbc∑
n=b1c+1

(
1

ns

)
=

∫ b

1

(
1

xs

)
dx−

∫ b

1

((
x− bxc − 1

2

)
s

x(s+1)

)
dx

+

(
1− b1c − 1

2

)
1

1s
−
(
b− bbc − 1

2

)
1

bs
, so

b∑
n=2

(
1

ns

)
=

∫ b

1

(
1

xs

)
dx− s

∫ b

1

(
x− bxc − 1

2

x(s+1)

)
dx− 1

2
+

1

2bs
.

In the limit that b→∞, this becomes

∞∑
n=2

(
1

ns

)
=

(
1

x(1−s)(1− s)

∣∣∣∣∞
1

− s
∫ ∞
1

(
x− bxc − 1

2

x(s+1)

)
dx− 1

2
;

ζ0(s)− 1 = s

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx+

1

s− 1
− 1

2
.
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Thus,

ζ0(s) = s

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx+

1

s− 1
+

1

2
. (2.3)

It is worth noting that, for all x ∈ R,
∣∣bxc − x+ 1

2

∣∣ ≤ 1
2
, so the integral

in (2.3) converges whenever s ∈ R(0,∞). Also worth noting is that

the second term in (2.3) is de�ned whenever s 6= 1. Thus, the

righthand side of (2.3) is de�ned whenever s ∈ R(0,∞)\{1}. Thus,

an analytic continuation of the pre-zeta functionmaybe formed.

De�nition 2.2 (First analytic continuation of the pre-zeta func-

tion). Let ζ1 : R(0,∞)\{1} → C be de�ned such that

ζ1(s) = s

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx+

1

s− 1
+

1

2
. (2.4)

Then, ζ1 is the �rst analytic continuation of the pre-zeta func-

tion.

That ζ1 is analytic is stated by [8] and will be assumed going for-

wards. Interestingly enough, this de�nition allows one to cal-

culate the value of ζ1(s) for s ∈ R(0, 1]\{1} without �rst knowing

the value of the zeta function anywhere else. That is to say, this

analytic continuation de�nition is not recursive, unlike the de�-

nition given for the gamma function.
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2.2 Further Continuation

To continue the zeta function further, it is useful to note the fol-

lowing thing.

Lemma 2.3. For all k ∈ Z,

∫ k+1

k

(
bxc − x+

1

2

)
dx = 0. (2.5)

Proof. Note that for all x ∈ (k, k + 1), bxc = k. Thus,

∫ k+1

k

(
bxc − x+

1

2

)
dx =

∫ k+1

k

(
k − x+

1

2

)
dx

=

(
kx− x2

2
+
x

2

∣∣∣∣k+1

k

= k2 + k − k2

2
− k − 1

2
+
k

2
+

1

2
− k2 +

k2

2
− k

2

= 0. [8]

Thus, there exists M > 0 such that for all a ∈ R and b > a,

∣∣∣∣∫ b

a

(
bxc − x+

1

2

)
dx

∣∣∣∣ < M . (2.6)

This will be useful in proving the next lemma.
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Lemma 2.4. For all s ∈ R(−1,∞),

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx converges.

Proof. Using integration by parts,

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx =

(∫ x
1

(
byc − y + 1

2

)
dy

x(s+1)

∣∣∣∣∣
∞

1

+ (s+ 1)

∫ ∞
1

(∫ x
1

(
byc − y + 1

2

)
dy

x(s+2)

)
dx.

(2.7)

The boundary termworks out to be 0 as both limits are 0 (remem-

ber that (2.6) means that the numerator of the boundary term is

always bunded, so as x→∞ the numerator remains bounded but

the denominator approaches in�nity), and the integral in the sec-

ond term in the righthand side converges whenever s ∈ R(−1,∞)

(using Lemma 0.1 and (2.6)), so the original integral converges

whenever s ∈ R(−1,∞).

Thus, despite not really having done much, a second analytic

continuation of the pre-zeta function may be de�ned.

De�nition2.3 (Second analytic continuation of the pre-zeta func-

tion). Let ζ2 : R(−1,∞)\{1} → C be de�ned such that

ζ2(s) = s

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx+

1

s− 1
+

1

2
. (2.8)

30



Then, ζ2 is the secondanalytic continuationof thepre-zeta func-

tion.

In order to continue the zeta function to the rest of the complex

plane, it would be nice to be able to write ζ2 as a single integral

without the other two terms in the righthand side of (2.8). In fact,

this is possible.

Lemma 2.5. For all s ∈ R(−1, 0),

s

∫ 1

0

(bxc − x+ 1
2

x(s+1)

)
dx =

1

s− 1
+

1

2
. (2.9)

Proof. For all x ∈ (0, 1), bxc = 0, so

s

∫ 1

0

(bxc − x+ 1
2

x(s+1)

)
dx = s

∫ 1

0

(
− 1

xs
+

1

2x(s+1)

)
dx

= s

(
1

(s− 1)x(s−1)
− 1

2sxs

∣∣∣∣1
0

=
s

s− 1
− 1

2
=
s− s+ 1

s− 1
+

1

2
.

Thus,

s

∫ 1

0

(bxc − x+ 1
2

x(s+1)

)
dx =

1

s− 1
+

1

2
. [8]
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Thus, for all s ∈ R(−1, 0),

ζ2(s) = s

∫ ∞
0

(bxc − x+ 1
2

x(s+1)

)
dx. (2.10)

At this point, it is useful to note that bxc−x+ 1
2
is a periodic func-

tion with period 1, and thus has a Fourier series anywhere except

its discontinuities (the integers) of

∞∑
n=0

(an cos(2πnx) + bn sin(2πnx)) ,

where

an = 2

∫ 1
2

− 1
2

((
bxc − x+

1

2

)
cos(2πnx)

)
dx, (2.11)

and

bn = 2

∫ 1
2

− 1
2

((
bxc − x+

1

2

)
sin(2πnx)

)
dx. [7] (2.12)

Now, if y > 0, then b−yc+ y + 1
2

= −byc − 1 + y + 1
2

= −byc+ y − 1
2
, so

bxc − x+ 1
2
is an odd function, so, as cos(2πnx) is an even function,

an = 0 for all n. Note that b0 = 0, so the Fourier series of this

function becomes
∞∑
n=1

(bn sin(2πnx)) ,
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where, as sin(2πnx) is an odd function,

bn = 4

∫ 1
2

0

((
−x+

1

2

)
sin(2πnx)

)
dx. (2.13)

Using integration by parts, this becomes

bn = − 4

2πn

((
−x+

1

2

)
cos(2πnx)

∣∣∣∣ 12
0

+ 4

∫ 1
2

0

(cos(2πnx)) dx

=
1

πn
+

4 sin(πn)

2πn

=
1

πn
.

Thus, for all x ∈ R\Z,

bxc − x+
1

2
=
∞∑
n=1

(
sin(2πnx)

πn

)
. [8] (2.14)

Thus, for all s ∈ R(−1, 0), using y = 2πnx substitution and then

Lemma 1.4 and then (1.5), and then noting that, for all s ∈ R(−1, 0),
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ζ0(1− s) = ζ2(1− s),

ζ2(s) =
s

π

∞∑
n=1

(
1

n

∫ ∞
0

(
sin(2πnx)

x(s+1)

)
dx

)
=
s

π

∞∑
n=1

(
(2πn)s

n

∫ ∞
0

(
sin(y)

y(s+1)

)
dy

)
= 2sπ(s−1)s

∞∑
n=1

(
1

n(1−s)

)∫ ∞
0

(
sin(y)

y(s+1)

)
dy

= −2sπ(s−1)sζ0(1− s)Γ(−s) sin
(πs

2

)
= 2sπ(s−1)ζ2(1− s)Γ(1− s) sin

(πs
2

)
. [8]

In conclusion, for all s ∈ R(−1, 0),

ζ2(s) = 2sπ(s−1) sin
(πs

2

)
Γ(1− s)ζ2(1− s). (2.15)

Thus, a relation between two di�erent values of the zeta function

has been derived. The righthand side of (2.15) is actually de�ned

whenever s ∈ R(−∞,−1] (it is de�ned for more values but those

are the only ones needed), and so may be used to continue the

zeta function to the rest of the complex plane.

De�nition 2.4 (Riemann zeta function). Let ζ : C\{1} → C be de-
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�ned by

ζ(s) =


ζ2(s) , s ∈ R[0,∞)

2sπ(s−1) sin
(
πs
2

)
Γ(1− s)ζ2(1− s) , s ∈ R(−∞, 0).

(2.16)

Then, ζ is called the Riemann zeta function. [5]

The Riemann zeta function is a very important function, with

entire books having been written about it (such as [8]). To close

out this article, a few properties of it will be listed.

2.3 Properties of the Riemann Zeta Func-

tion

For most in�nite sums, the only information that can be de-

rived analytically from them is whether they converge or di-

verge. For some classes of convergent in�nite sums, however,

there are well-known methods to calculate their values. Con-

sider the case of �nding the value of p when

p =
∞∑
n=1

(
1

n2

)
.
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Note that this is equivalent to �nding the value of ζ(2).

In order to determine this, the �fth proof method in [1] will be

used, which starts o� with something that will remain unproven:

for all x ∈ [0, 1],

x(1− x) =
1

6
−
∞∑
n=1

(
cos (2πnx)

π2n2

)
. [1] (2.17)

In particular, when x = 0,

∞∑
n=1

(
1

π2n2

)
=

1

6
,

so it comes to light that

ζ(2) =
π2

6
. (2.18)

That was an example of �nding a value of ζ using the sum de�ni-

tion. Consider, now, the integral de�nition, which is to say, that

when s ∈ R[0,∞)\{1} that

ζ(s) = s

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx+

1

s− 1
+

1

2
.

Well, when s = 0, this turns into −1
2
quite easily, so

ζ(0) = −1

2
. (2.19)
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It is also possible to calculate values of ζ using the recursive def-

inition. For example,

ζ(−1) = −Γ(2)ζ(2)

2π2
, so

ζ(−1) = − 1

12
. (2.20)

One thing worth examining about the Riemann zeta function is

where its zeros are.

Theorem 2.1. For all n ∈ Z+,

ζ(−2n) = 0. (2.21)

Proof. For all n ∈ Z+, −2n ∈ R(−∞, 0), so

ζ(−2n) = 2(−2n)π(−2n−1) sin(−πn)Γ(2n+ 1)ζ(2n+ 1) = 0. [8]

It will be stated without proof (though a proof is given in [8]), but

it is true that the sum de�nition of the Riemann zeta function

may be rewritten as an in�nite product.
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Lemma 2.6. Let P be the set of all primes. For all z ∈ R(1,∞),

ζ(s) =
∏
p∈P

(
1

1− p(−s)

)
. [8] (2.22)

Note that this product can never be zero, as none of the terms can

be zero and as s→∞ the factors approach 1. Thus, the Riemann

zeta function can never be zero in the regionR(1,∞). Examining

the functional de�nition, it is never zero except for the “trivial”

zeros at the negative even integers, as none of the factors is ever

zero, due to simple exponent rules, how the sine function be-

haves, and Theorem 1.2 and the fact the zeta function is never

zero on R(1,∞). Thus, the Riemann zeta function is never zero

anywhere, other than the trivial zeros or in the region R[0, 1].

In fact, there exists a conjecture, known as the Riemann zeta hy-

pothesis, which claims that all nontrivial zeros of the Riemann

zeta function have real part of 1
2
. [8]

To �nish o� this article, the character of the Riemann zeta func-

tion will be examined.

Theorem 2.2. ζ is meromorphic on C, with a pole at 1 of order 1. Fur-

thermore, if R is the residue of the pole of ζ(z) at z = 1, then

R = 1. (2.23)
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Proof. If one assumes that the functional relation de�ning the

Riemann zeta function actually works on the positive-reals half-

plane as well as the negative-reals half-plane (ignoring remov-

able singularities), then near s = 1,

ζ(s) = 2sπ(s−1) sin
(πs

2

)
Γ(1− s)ζ(1− s)

=

(
1

1− s

)(
2sπ(s−1) sin

(πs
2

)
Γ(2− s)ζ(1− s)

)
.

With that in mind, let H : C→ C be de�ned by

H(z) = −2sπ(s−1) sin
(πs

2

)
Γ(2− s)ζ(1− s).

Then, noting that H(z) is perfecly de�ned at z = 1, it becomes

clear that the pole is of order 1 and that the residue is

R = H(1) = −2Γ(1)ζ(0) = 1.

Alternatively, one may use (2.8) to note that near s = 1,

ζ(s) = s

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx+

1

s− 1
+

1

2
.

With that in mind, let H : C→ C be de�ned by

H(s) = s(s− 1)

∫ ∞
1

(bxc − x+ 1
2

x(s+1)

)
dx+ 1 +

s− 1

2
.
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Here, it is quite easy to see that H(1) = 1, which also completes

the proof.

With that, the analysis of the gammaandRiemann zeta functions

comes to an end. Figures 2.3, 2.4, and 2.5 show o� how the full

Riemann zeta function behaves on the complex plane.

Figure 2.3: ζ(z) for z ∈ [−4, 4]\{1}
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Figure 2.4: ζ(z) for z ∈ [−6,−1], better showcasing the trivial zeros

Figure 2.5: |ζ(z)| (cut o� in height for the pole) for z = x+iy, where
(x, y) ∈ ([−3, 3]× [−3, 3])\{(1, 0)}
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