
Answer Sheet (31251, Autumn 2022)
Multiple-Choice Questions
Please type your choices (among A, B, C, D) into the space after each question number.

Short-Answer Questions
Please type your answer into the space below each question number.

Question 16 (Word Limit: 100)

Here are four possible insertion order: (note that below are just some of the correct insertion orders; more
correct insertions orders exist).

• 6, 3, 7, 2, 4, 9
• 6, 3, 9, 2, 4, 7
• 4, 2, 7, 3, 6, 9
• 4, 3, 7, 2, 6, 9

Question 17 (Word Limit: 100)

The code checks every node of a linked list. The return is the subtraction of
• The absolute of all non-zero data in all nodes

from
• number * the number of occurrences of 0 in the nodes’ data

Question 18 (Word Limit: 100)

The code print outs the sum of all the numbers that form a path from the bottom-left corner to the top-right
corner of a matrix.

Question 19 (Word Limit: 200)

The problem with the current insertion mechanism is that ints can only be stored in the diagonal of the two-
dimensional array, which easily cause collisions and is a waste of space in the array.

Here are two possible solutions (other solutions may also exist):

Solution 1: Use two different hash functions for row and column, respectively.
Given an int number, we use

• One hash function to give the row index, say X.
• A second hash function to give the column index, say Y.
• The two hash functions must be different so that we can put numbers as evenly as possible to the

matrix (rather than only putting them to the diagonal).

Collision handling: // suppose X, Y are the hashing result of a number x.

 int a = X, b = Y, counter = 0;
while (counter < (n^2 – 1) && A[a][b] is occupied) {

1 B 4 B 7 A 10 D 13 A B C

2 B 5 A D 8 A C D 11 C 14 A B C

3 A 6 B C D 9 A C D 12 D 15 A

Page of 1 2

 counter += 1;
 a = (X + int((X + counter)/n)) % n;
 b = (Y + counter%n) % n;
}
if (counter < (n^2 – 1))
 A[a][b] = x.
else
 std::cout << “matrix is full” << std::endl;

Solution 2: Use the two-dimensional array as a one-dimensional array. As such,
we need a mechanism to develop a one-to-one mapping between two-dimensional
indices [0…n][0…n] and one dimensional indices [0…n2-1]. Then, we only need one
hash function with linear probing to insert ints to the one-dimensional indices
and then convert every one-dimensional index to two-dimensional indices for
completing the insertion.

Question 20 (Word Limit: 100)

We can use two layers to for-loops to check for the longest turbulence starting from every number.

Question 21 (Word Limit: 200)

We can reduce the computational cost during the computational process we provided in Question 20.
If a number is in the middle of a sequence, then it cannot be part of another sequence.

Bearing this in mind, we only need to check the possible turbulences from 1, 5, 7, 4, 3 when looking for the
longest turbulence.

Page of 2 2

