
data structures & 
Tutorial 8-9 

algorithms


1

97

2 6 9

5115

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

(Week 9-10)



Burning questions from 
the previous tutorial?



This week’s lab

 Graph
 Weighted Graph
 Breadth First Search (BFS
 Dijkstra’s Algorth


Minimum Knight Move
Shortest Path

This week we are learning about 
graphs and some very powerful 
graph algorithms

Minimum Knight Moves



Graphs
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Suppose we have a collection of points that we call vertices
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And we connect those vertices with edges
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We can also have directed edges in a directed graph
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An undirected graph is really a directed graph in disguise



Graphs

0

8

7

1

2

3

4

5

6



Graphs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

7

1

2

3

4

5

6

1

2

3

4

5

6

7

8

0

1 2 3 4 5 6 7 80

One common way to represent a graph is an adjacency matrix
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If two vertices share an edge, then we put a 1 in the matrix
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If two vertices share an edge, then we put a 1 in the matrix



Graphs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

0

1 2 3 4 5 6 7 80

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

8

7

1

2

3

4

5

6

fr
om

to

Filling this out we get the whole adjacency matrix
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Another common way to represent a graph is an adjacency list



Graphs

0:


1:


2:


3:


4:


5:


6:


7:


8:

{1}

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

0

8

7

1

2

3

4

5

6

For every vertex we store a keep a list of its neighbours
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For every vertex we store a keep a list of its neighbours
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This is what the whole list looks like
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0 1 2 3 4 5 6 7 8

Graphs

{...} {...} {...} {...} {...} {...} {...} {...} {...}

std std:: < :: < >>vector unordered_set int

An adjacency list is space efficient and easy to work with



Graphs

// Inserting an edge
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Graph Search Algorithms

There are two really famous algorithms


Depth First Search (DFS)


Breadth First Search (BFS)


And the good thing is they only differ very slightly in 
terms of coding them
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DFS

Like how a human 
would search

BFS

Like how a water 

would flow
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Knight Moves

Imagine an infinite chessboard and 
a knight sitting on square (0, 0). 


We are given a target square (x, y) 
on the chessboard.  


The question is: what is the 
minimum number of moves the knight 
needs to take to travel from (0, 0) 
to (x, y), when the knight can move 
in the usual way it does in chess?
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Knight Moves

0 moves

1 move

2 moves

To find the shortest path we want to first explore all the vertices 

that are one move away, and then 2 moves away, and so forth



Knight Moves

0 moves

1 move

2 moves

We also don’t want to go in circles so we can ignore vertices we have 

already seen



Night Moves

(1,2)

(2,1)

(2,-1)

(1,-2)(-1,-2)

(-2,-1)

(-2,1)

(-1,2)

Now here is a  
important idea!


We dont actually need to 
generate the whole graph.  
We just need to be able to 
calculate the neighbouring 
verticies

really
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Weighted Graphs

A

F

C D

E
B

G

Now let take our regular graph
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And add weights to the graph
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These weights can represent many different things
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We can use an adjacency matrix to store these weights
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A:


B:


C:


D:


E:


F:


G:

{( , ), ( , )C F3 2 }

{( , ), ( , ), ( , )D E G1 2 2 }

{( , ), ( , ), ( , )A E F3 1 2 }

{( , ), ( , )B C1 4 }

{( , ), ( , )B F2 5 }

{( , ), ( , ), ( , )B C F2 1 3 }

{( , ), ( , ), ( , ), ( , )A B C G2 6 2 5 }

Or we can use an adjacency list to store these weights



Shortest Path

Start

We want to find the  from the  to the shortest path start end

EndA
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Dijkstra Algorithm
To the rescue! 



Who is Dijkstra?

 Edsger Dijkstra was a Dutch computer 
scientist and one of the most influential 
figures in the field of computer science

 He received the Turing Award in 1972 for 
his fundamental contributions to the field 
of programming languages and the design of 
high-level programming systems

 Hated the "goto" statement in programming



Dijkstra’s Algorithm

So with this algorithm we keep track of  each nodebestDistanceTo
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Dijkstra’s Algorithm

The  represents the shortest distance 
we have  from the  to that 

number above each node
found so far start node
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Dijkstra’s Algorithm

We can get to vertex C through A in 0 + 3 = 3 minutes
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As 3 minutes is better than ∞ minutes, we update the estimate
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We can get to vertex F through A in 0 + 2 = 2 minutes
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As 2 minutes is better than ∞ minutes, we update the estimate
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Dijkstra’s Algorithm

Vertex F has the shortest estimate so we will visit F
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Vertex F has the shortest estimate so we will visit F
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Dijkstra’s Algorithm

We can get to vertex C through F in 2 + 2 = 4 minutes
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Dijkstra’s Algorithm

As 4 minutes is worse than 3 minutes we don’t update the estimate
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Dijkstra’s Algorithm

We can get to vertex E through F in 2 + 3 = 5 minutes
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Dijkstra’s Algorithm

As 5 minutes is better than ∞ minutes we update the estimate
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Dijkstra’s Algorithm

We can get to vertex B through F in 2 + 6 = 8 minutes
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Dijkstra’s Algorithm

As 8 minutes is better than ∞ minutes we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
8

 Update estimates for 
each unvisited neighbou

 Choose next vertex to 
visit



Dijkstra’s Algorithm

We can get to vertex G through F in 2 + 5 = 7 minutes
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Dijkstra’s Algorithm

As 7 minutes is better than ∞ minutes we update the estimate
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Dijkstra’s Algorithm

Vertex C has the shortest estimate so we will visit C
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Vertex C has the shortest estimate so we will visit C
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We can get to vertex D through C in 3 + 4 = 7 minutes
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As 7 minutes is better than ∞ minutes, we update the estimate
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We can get to vertex E through C in 3 + 1 = 4 minutes
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As 4 minutes is better than 5 minutes, we update the estimate
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Vertex E has the shortest estimate so we will visit E
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Vertex E has the shortest estimate so we will visit E
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Dijkstra’s Algorithm

We can get to vertex B through E in 4 + 2 = 6 minutes
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Dijkstra’s Algorithm

As 6 minutes is better than 8 minutes, we update the estimate
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Vertex B has the shortest estimate so we will visit B
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Dijkstra’s Algorithm

Now we have reached the target node, so we are done
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This means that we can get from A to B in 6 minutes
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But what we really wanted was the  from A to Bshortest path
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To to this we need to update our algorithm slightly
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We can get to vertex C through A in 0 + 3 = 3 minutes
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As 3 minutes is better than ∞ minutes, we update the estimate
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We can get to vertex F through A in 0 + 2 = 2 minutes
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As 2 minutes is better than ∞ minutes, we update the estimate
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Vertex F has the shortest estimate so we will visit F
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Vertex F has the shortest estimate so we will visit F
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We can get to vertex C through F in 2 + 2 = 4 minutes
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As 4 minutes is worse than 3 minutes we don’t update the estimate
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So we also do not update the previous vertex
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We can get to vertex E through F in 2 + 3 = 5 minutes
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As 5 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex
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We can get to vertex B through F in 2 + 6 = 8 minutes
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As 8 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex
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We can get to vertex G through F in 2 + 5 = 7 minutes
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As 7 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex
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Vertex C has the shortest estimate so we will visit C
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Vertex C has the shortest estimate so we will visit C
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We can get to vertex D through C in 3 + 4 = 7 minutes
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As 7 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex
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We can get to vertex E through C in 3 + 1 = 4 minutes
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As 4 minutes is better than 5 minutes we update the estimate

and we set the previous vertex
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Vertex E has the shortest estimate so we will visit E
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Vertex E has the shortest estimate so we will visit E
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We can get to vertex B through E in 4 + 2 = 6 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for 
each unvisited neighbour 
and set previous verte

 Choose next vertex to 
visit



Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

As 6 minutes is better than 8 minutes we update the estimate

and we set the previous vertex
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Vertex B has the shortest estimate so we will visit B
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Now we have reached the target node, so we are done
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Now to get the path we just follow the arrows back to the start
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Now to get the path we just follow the arrows back to the start
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Now to get the path we just follow the arrows back to the start
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Finally we reverse the order to get the path from A to B
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What data structure lets us efficiently pick the node with the  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How can we keep track of the previous vertex

What does this algorithm remind you of
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How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans


 Min queue/heap


 Hashmap (or an array if the vertices are just numbers)


 Breadth First Search
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Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans


 Min queue/heap


 Hashmap (or an array if the vertices are just numbers)


 Breadth First Search



function
new
new

new float infinity

 
    minQueue   
    visited   
    bestDistanceTo   < >

    bestDistanceTo   
    minQueue ;    



      minQueue
        distance  current   minQueue
         visited
            
        visited

         neighbour  weight   current
            distanceViaCurrent  bestDistanceTo current   weight

             distanceViaCurrent  bestDistanceTo neighbour
                bestDistanceTo neighbour   distanceViaCurrent

                minQueue distanceViaCurrent neighbour

     bestDistanceTo


singleSourceShortestPaths  
MinQueue
Set

Vector size

push  

empty
pop

contains current

insert current

push  

( , ):

= ()

= ()


= ( . (), )



[ ] =
. (( , ))

while not . ():

( , ) = . ()

if . ( ):


continue

. ( )



for ( , ) in [ ]:

= [ ] +

if < [ ]:

[ ] =

. (( , ))



return

start adjacencylist

adjacencylist

start
start

adjacencylist

0

0


