
data structures &
Tutorial 8-9

algorithms

1

97

2 6 9

5115

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

(Week 9-10)

Burning questions from 
the previous tutorial?

This week’s lab

 Graph
 Weighted Graph
 Breadth First Search (BFS
 Dijkstra’s Algorth

Minimum Knight Move
Shortest Path

This week we are learning about
graphs and some very powerful
graph algorithms

Minimum Knight Moves

Graphs

Graphs

0

8

7

1

2

3

4

5

6

Suppose we have a collection of points that we call vertices

Graphs

0

8

7

1

2

3

4

5

6

And we connect those vertices with edges

Graphs

0

8

7

1

2

3

4

5

6

We can also have directed edges in a directed graph

Graphs

0

8

7

1

2

3

4

5

6

An undirected graph is really a directed graph in disguise

Graphs

0

8

7

1

2

3

4

5

6

Graphs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

7

1

2

3

4

5

6

1

2

3

4

5

6

7

8

0

1 2 3 4 5 6 7 80

One common way to represent a graph is an adjacency matrix

fr
om

to

Graphs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

8

7

1

2

3

4

5

6

1

2

3

4

5

6

7

8

0

1 2 3 4 5 6 7 80

f
r
o
m

to

If two vertices share an edge, then we put a 1 in the matrix

Graphs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

8

7

1

2

3

4

5

6

1

2

3

4

5

6

7

8

0

1 2 3 4 5 6 7 80

f
r
o
m

to

If two vertices share an edge, then we put a 1 in the matrix

Graphs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

0

1 2 3 4 5 6 7 80

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

8

7

1

2

3

4

5

6

fr
om

to

Filling this out we get the whole adjacency matrix

Graphs

0

8

7

1

2

3

4

5

6

0:

1:

2:

3:

4:

5:

6:

7:

8:

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Another common way to represent a graph is an adjacency list

Graphs

0:

1:

2:

3:

4:

5:

6:

7:

8:

{1}

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

0

8

7

1

2

3

4

5

6

For every vertex we store a keep a list of its neighbours

Graphs

0

8

7

1

2

3

4

5

6

0:

2:

3:

4:

5:

6:

7:

8:

1:

{1}

{0 2 3 6 7 8, , , , , }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

For every vertex we store a keep a list of its neighbours

Graphs

0

8

7

1

2

3

4

5

6

0:

1:

2:

3:

4:

5:

6:

7:

8:

{1}

{0 2 3 6 7 8, , , , , }

{1 3, }

{1 2 4 5 6, , , , }

{3 6, }

{3 6, }

{1 3 5 7, , , }

{1 6 8, , }

{1 7, }

This is what the whole list looks like

Graphs

0:

1:

2:

3:

4:

5:

6:

7:

8:

{1}

{0 2 3 6 7 8, , , , , }

{1 3, }

{1 2 4 5 6, , , , }

{3 6, }

{3 6, }

{1 3 5 7, , , }

{1 6 8, , }

{1 7, }

std std:: < :: < >>vector unordered_set int

0 1 2 3 4 5 6 7 8

Graphs

{...} {...} {...} {...} {...} {...} {...} {...} {...}

std std:: < :: < >>vector unordered_set int

An adjacency list is space efficient and easy to work with

Graphs

// Inserting an edge
0:

1:

2:

3:

4:

5:

6:

7:

8:

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

std vector std unordered_set:: < :: < >> ();int adjacencyList 9

Graphs

std:: < > = [];

. ();

set neighbours1 adjacencyList
neighbours1

int 1
0insert

// Inserting an edge
0:

1:

2:

3:

4:

5:

6:

7:

8:

{ }

{0 2 3 6 7 8}

{ }

{ }

{ }

{ }

{ }

{ }

{ }

std vector std unordered_set:: < :: < >> ();int adjacencyList 9

Graphs

adjacencyList[]. ();1 0insert

// Inserting an edge
0:

1:

2:

3:

4:

5:

6:

7:

8:

{ }

{0 2 3 6 7 8}

{ }

{ }

{ }

{ }

{ }

{ }

{ }

std vector std unordered_set:: < :: < >> ();int adjacencyList 9

Graphs

adjacencyList[]. ();0 1insert

// Inserting an edge
0:

1:

2:

3:

4:

5:

6:

7:

8:

{1}

{0 2 3 6 7 8}

{ }

{ }

{ }

{ }

{ }

{ }

{ }

adjacencyList[]. ();1 0insert

std vector std unordered_set:: < :: < >> ();int adjacencyList 9

Graphs

adjacencyList[]. ();3 5contains

// Checking if there is an edge
0:

1:

2:

3:

4:

5:

6:

7:

8:

{1}

{0 2 3 6 7 8, , , , , }

{1 3, }

{1 2 4 5 6, , , , }

{3 6, }

{3 6, }

{1 3 5 7, , , }

{1 6 8, , }

{1 7, }

std vector std unordered_set:: < :: < >> ();int adjacencyList 9

Graphs

adjacencyList[]. ();3 5contains

// Checking if there is an edge
0:

1:

2:

4:

5:

6:

7:

8:

3:

{1}

{0 2 3 6 7 8, , , , , }

{1 3, }

{1 2 4 5 6, , , , }

{3 6, }

{3 6, }

{1 3 5 7, , , }

{1 6 8, , }

{1 7, }

std vector std unordered_set:: < :: < >> ();int adjacencyList 9

Graphs

adjacencyList[]. ();3 5contains

// Checking if there is an edge
0:

1:

2:

4:

5:

6:

7:

8:

3:

{1}

{0 2 3 6 7 8, , , , , }

{1 3, }

{1 2 4 5 6, , , , }

{3 6, }

{3 6, }

{1 3 5 7, , , }

{1 6 8, , }

{1 7, }

std vector std unordered_set:: < :: < >> ();int adjacencyList 9

Graph Search Algorithms

There are two really famous algorithms

Depth First Search (DFS)

Breadth First Search (BFS)

And the good thing is they only differ very slightly in
terms of coding them

Graph Search Algorithms

Graph Search Algorithms

1

2 5

6 73 4

1

2 3

6 74 5

DFS

Drill down all the

way down

BFS

Explore Layer

by layer

Graph Search Algorithms

DFS

Like how a human
would search

BFS

Like how a water

would flow

Graph Search Algorithms

1

2 5

6 73 4

1

2 3

6 74 5

DFS

Drill down all the

way down

BFS

Explore Layer

by layer

Breadth First Search

0

1

2
3

4

5

6

bfsQueue

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

0

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

236

Breadth First Search
void int

int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

0

1

2
3

4

5

6

bfsQueue

236

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

36

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

364 5

Breadth First Search
void int

int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

0

1

2
3

4

5

6

bfsQueue

364 5

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

64 5

Breadth First Search
void int

int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

0

1

2
3

4

5

6

bfsQueue

64 5

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

4 5

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

4 5

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

4

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

1 4

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

1 4

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

1

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

1

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->

bfsQueue

Breadth First Search

0

1

2
3

4

5

6

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

-->bfsQueue

Knight Moves

Imagine an infinite chessboard and
a knight sitting on square (0, 0).

We are given a target square (x, y)
on the chessboard.

The question is: what is the
minimum number of moves the knight
needs to take to travel from (0, 0)
to (x, y), when the knight can move
in the usual way it does in chess?

Knight Moves

Imagine an infinite chessboard and
a knight sitting on square (0, 0).

We are given a target square (x, y)
on the chessboard.

The question is: what is the
minimum number of moves the knight
needs to take to travel from (0, 0)
to (x, y), when the knight can move
in the usual way it does in chess?

Knight Moves

Imagine an infinite chessboard and
a knight sitting on square (0, 0).

We are given a target square (x, y)
on the chessboard.

The question is: what is the
minimum number of moves the knight
needs to take to travel from (0, 0)
to (x, y), when the knight can move
in the usual way it does in chess?

Knight Moves

Imagine an infinite chessboard and
a knight sitting on square (0, 0).

We are given a target square (x, y)
on the chessboard.

The question is: what is the
minimum number of moves the knight
needs to take to travel from (0, 0)
to (x, y), when the knight can move
in the usual way it does in chess?

Knight Moves

Imagine an infinite chessboard and
a knight sitting on square (0, 0).

We are given a target square (x, y)
on the chessboard.

The question is: what is the
minimum number of moves the knight
needs to take to travel from (0, 0)
to (x, y), when the knight can move
in the usual way it does in chess?

Knight Moves

Imagine an infinite chessboard and
a knight sitting on square (0, 0).

We are given a target square (x, y)
on the chessboard.

The question is: what is the
minimum number of moves the knight
needs to take to travel from (0, 0)
to (x, y), when the knight can move
in the usual way it does in chess?

Knight Moves

Imagine an infinite chessboard and
a knight sitting on square (0, 0).

We are given a target square (x, y)
on the chessboard.

The question is: what is the
minimum number of moves the knight
needs to take to travel from (0, 0)
to (x, y), when the knight can move
in the usual way it does in chess?

Knight Moves

Knight Moves

Knight Moves

0 moves

1 move

2 moves

To find the shortest path we want to first explore all the vertices

that are one move away, and then 2 moves away, and so forth

Knight Moves

0 moves

1 move

2 moves

We also don’t want to go in circles so we can ignore vertices we have

already seen

Night Moves

(1,2)

(2,1)

(2,-1)

(1,-2)(-1,-2)

(-2,-1)

(-2,1)

(-1,2)

Now here is a
important idea!

We dont actually need to
generate the whole graph.  
We just need to be able to
calculate the neighbouring
verticies

really

Night Moves

(1,2)

(2,1)

(2,-1)

(1,-2)(-1,-2)

(-2,-1)

(-2,1)

(-1,2)

So if we are currently at point

Then the neighbouring points are

(,)x y

(+ , +)

(+ , -)

(- , +)

(- , -)

x y

x y

x y

x y

2 1

2 1

2 1

2 1

(+ , +)

(+ , -)

(- , +)

(- , -)

x y

x y

x y

x y

1 2

1 2

1 2

1 2

Night Moves
void int

int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue
adjacencyList

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop

contains
insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: []) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

void int
int
int

int

int

 start
 set visited
 queue bfsQueue

 visited start
 bfsQueue start

 bfsQueue
bfsQueue

bfsQueue

visited
visited
bfsQueue

bfs

insert
push

empty
front

pop
getNeighbours
contains

insert
push

() { 
:: < > {} 
:: < > ;  

. (); 
. ();
 

while (! . ()) { 
= . (); 
. (); 

for (: ()) { 
if (! . ()) { 

. (); 
. (); 

} 
} 

} 
}

std
std

 v

 u v
 u
 u
 u

Weighted Graphs

A

F

C D

E
B

G

Now let take our regular graph

Weighted Graphs

A

F

C D

E
B

G

3

2

2
3

6

2

4

1

2

5

1

And add weights to the graph

Weighted Graphs

A

F

C D

E
B

G

3

2

2
3

6

2

4

11

2

5

1

2

3

4

5

6

These weights can represent many different things

Weighted Graphs

A

F

C D

E
B

G

3

2

2
3

6

2

4

1

2

5

1 ∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

B

C

D

E

F

G

A

B C D E F GA

fr
om

to

3

2

1

2

6

2

3

4

1

2

1

4

2

1

3

2

6

2

3

5

2

5

We can use an adjacency matrix to store these weights

Weighted Graphs

A

F

C D

E
B

G

3

2

2
3

6

2

4

1

2

5

1

A:

B:

C:

D:

E:

F:

G:

{(,), (,)C F3 2 }

{(,), (,), (,)D E G1 2 2 }

{(,), (,), (,)A E F3 1 2 }

{(,), (,)B C1 4 }

{(,), (,)B F2 5 }

{(,), (,), (,)B C F2 1 3 }

{(,), (,), (,), (,)A B C G2 6 2 5 }

Or we can use an adjacency list to store these weights

Shortest Path

Start

We want to find the from the to the shortest path start end

EndA

F

C D

E
B

G

3

2

2
3

6

2

4

1

2

5

1

Dijkstra Algorithm
To the rescue!

Who is Dijkstra?

 Edsger Dijkstra was a Dutch computer
scientist and one of the most influential
figures in the field of computer science

 He received the Turing Award in 1972 for
his fundamental contributions to the field
of programming languages and the design of
high-level programming systems

 Hated the "goto" statement in programming

Dijkstra’s Algorithm

So with this algorithm we keep track of each nodebestDistanceTo

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

∞

∞
∞

Dijkstra’s Algorithm

The represents the shortest distance
we have from the to that

number above each node
found so far start node

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

∞

∞
∞

Dijkstra’s Algorithm

So just like with BFS we have and nodesvisited unvisited

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

∞

∞
∞

Dijkstra’s Algorithm

So just like with BFS we have and nodesvisited unvisited

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

∞

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex C through A in 0 + 3 = 3 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

∞

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 3 minutes is better than ∞ minutes, we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex F through A in 0 + 2 = 2 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 2 minutes is better than ∞ minutes, we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex F has the shortest estimate so we will visit F

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex F has the shortest estimate so we will visit F

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex C through F in 2 + 2 = 4 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 4 minutes is worse than 3 minutes we don’t update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex E through F in 2 + 3 = 5 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 5 minutes is better than ∞ minutes we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex B through F in 2 + 6 = 8 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
∞

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 8 minutes is better than ∞ minutes we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex G through F in 2 + 5 = 7 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 7 minutes is better than ∞ minutes we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex C has the shortest estimate so we will visit C

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex C has the shortest estimate so we will visit C

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex D through C in 3 + 4 = 7 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 7 minutes is better than ∞ minutes, we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex E through C in 3 + 1 = 4 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

5
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 4 minutes is better than 5 minutes, we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex E has the shortest estimate so we will visit E

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex E has the shortest estimate so we will visit E

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex B through E in 4 + 2 = 6 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 6 minutes is better than 8 minutes, we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex B has the shortest estimate so we will visit B

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

Now we have reached the target node, so we are done

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

This means that we can get from A to B in 6 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

But what we really wanted was the from A to Bshortest path

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

 Update estimates for
each unvisited neighbou

 Choose next vertex to
visit

Dijkstra’s Algorithm

To to this we need to update our algorithm slightly

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

∞

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

∞

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

We can get to vertex C through A in 0 + 3 = 3 minutes

Dijkstra’s Algorithm

As 3 minutes is better than ∞ minutes, we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

3

∞
∞

Because we updated the value we update the previous vertex

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex F through A in 0 + 2 = 2 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞∞

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 2 minutes is better than ∞ minutes, we update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

Because we updated the value we update the previous vertex

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex F has the shortest estimate so we will visit F

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex F has the shortest estimate so we will visit F

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex C through F in 2 + 2 = 4 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 4 minutes is worse than 3 minutes we don’t update the estimate

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

So we also do not update the previous vertex

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex E through F in 2 + 3 = 5 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

∞
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

As 5 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex B through F in 2 + 6 = 8 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
∞

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
8

As 8 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex G through F in 2 + 5 = 7 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

∞2

∞

0

3

5
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

As 7 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex C has the shortest estimate so we will visit C

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex C has the shortest estimate so we will visit C

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex D through C in 3 + 4 = 7 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

∞

0

3

5
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

5
8

As 7 minutes is better than ∞ minutes we update the estimate

and we set the previous vertex

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex E through C in 3 + 1 = 4 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

5
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

As 4 minutes is better than 5 minutes we update the estimate

and we set the previous vertex

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex E has the shortest estimate so we will visit E

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex E has the shortest estimate so we will visit E

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

We can get to vertex B through E in 4 + 2 = 6 minutes

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
8

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

As 6 minutes is better than 8 minutes we update the estimate

and we set the previous vertex

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Vertex B has the shortest estimate so we will visit B

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Now we have reached the target node, so we are done

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

 Update estimates for
each unvisited neighbour
and set previous verte

 Choose next vertex to
visit

Dijkstra’s Algorithm

Now to get the path we just follow the arrows back to the start

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

B

Dijkstra’s Algorithm

Now to get the path we just follow the arrows back to the start

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

B E

Dijkstra’s Algorithm

Now to get the path we just follow the arrows back to the start

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

E CB

Dijkstra’s Algorithm

Now to get the path we just follow the arrows back to the start

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

E C AB

Dijkstra’s Algorithm

Finally we reverse the order to get the path from A to B

A

F

C D

E
B

G

3

2

2

3
6

2

4

1

2

5

1

72

7

0

3

4
6

ECA B

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans

 Min queue/heap

 Hashmap (or an array if the vertices are just numbers)

 Breadth First Search

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans

 Min priority queue

 Hashmap (or an array if the vertices are just numbers)

 Breadth First Search

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans

 Min priority queue

 Hashmap (or an array if the vertices are just numbers)

 Breadth First Search

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans

 Min priority queue

 Hashmap (or an array if the vertices are just numbers)

 Breadth First Search

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans

 Min queue/heap

 Hashmap (or an array if the vertices are just numbers)

 Breadth First Search

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans

 Min priority queue

 Hashmap (or an array if the vertices are just numbers)

 Breadth First Search

Dijkstra’s Algorithm

How can we keep track of the visited vertex

What data structure lets us efficiently pick the node with the  
shortest estimate

How can we keep track of the previous vertex

What does this algorithm remind you of

 Either a set of visited nodes, or a vector of booleans

 Min queue/heap

 Hashmap (or an array if the vertices are just numbers)

 Breadth First Search

function
new
new

new float infinity

 minQueue
 visited
 bestDistanceTo < >

 bestDistanceTo
 minQueue ;

 minQueue
 distance current minQueue
 visited

 visited

 neighbour weight current
 distanceViaCurrent bestDistanceTo current weight

 distanceViaCurrent bestDistanceTo neighbour
 bestDistanceTo neighbour distanceViaCurrent

 minQueue distanceViaCurrent neighbour

 bestDistanceTo

singleSourceShortestPaths
MinQueue
Set

Vector size

push

empty
pop

contains current

insert current

push

(,):

= ()

= ()

= (. (),)

[] =
. ((,))

while not . ():

(,) = . ()

if . ():

continue

. ()

for (,) in []:

= [] +

if < []:

[] =

. ((,))

return

start adjacencylist

adjacencylist

start
start

adjacencylist

0

0

