Binary Search Trees:
Motivation

Runway Reservations

Problem: You are in charge of an airport with a single runway. Planes radio
in to request a landing time. You need to schedule the landing times so that
no planes land < £ minutes of each other.

Example with k£ = 3:

current set request decision

Runway Reservations

Problem: You are in charge of an airport with a single runway. Planes radio
in to request a landing time. You need to schedule the landing times so that
no planes land < £ minutes of each other.

Example with k£ = 3:

current set request decision
! 13 scheduled

Runway Reservations

Problem: You are in charge of an airport with a single runway. Planes radio
in to request a landing time. You need to schedule the landing times so that
no planes land < £ minutes of each other.

Example with k£ = 3:

current set request decision
! 13 scheduled

{13} 7 scheduled

Runway Reservations

Problem: You are in charge of an airport with a single runway. Planes radio
in to request a landing time. You need to schedule the landing times so that
no planes land < £ minutes of each other.

Example with k£ = 3:

current set request decision
! 13 scheduled
{13} 7 scheduled

17,13} 9 denied

Runway Reservations

Problem: You are in charge of an airport with a single runway. Planes radio
in to request a landing time. You need to schedule the landing times so that
no planes land < £ minutes of each other.

Example with k£ = 3:

current set request decision
! 13 scheduled
{13} 7 scheduled

{7,13} 9 denied

{7,13} 22 scheduled

Abstracting the
problem

Ve want to maintain a set of keys (landing times). Ve want to
check if a key satisfies the time constraint, and if so insert it into the
database. Ve also want to be able to remove keys.

What data structure is good for this problem?

Unordered Vector

We check if a request is valid and if so insert it at the end of a vector.
13[7]1]20] |

What is the problem with this solution!?

Unordered Vector

We check if a request is valid and if so insert it at the end of a vector.
13[7]1]20] |

What is the problem with this solution!?

insertion is O(1).

Unordered Vector

We check if a request is valid and if so insert it at the end of a vector.
13[7]1]20] |

What is the problem with this solution!?

insertion is O(1).

checking the constraint is ©(n).

Sorted Vector

How about if we maintain a sorted vector?

T Tolslm] [

Now we can check if a request is valid via binary search.

Checking the constraint is ©(logn) .

Sorted Vector

How about if we maintain a sorted vector?

T Tolslm] [

Now we can check if a request is valid via binary search.
Checking the constraint is ©(logn) .

What is the problem with this solution!?

Sorted Linked List

What is the problem with this solution?

Sorted Linked List

What is the problem with this solution!?

Checking the constraint is O(n) .

Set/Map

If you thought of std::set or std::map, you are exactly right!

A map provides the functionality needed for the runway reservation
problem.

Map is typically implemented with a (balanced) binary search tree,
the data structure we will see today.

Binary search trees combine the benefits of the sorted array and linked list
approaches.

Formalising Runway
Reservations

Abstract Data Type

Let's develop a set of operations to solve the runway reservation problem.

We want to maintain a set of keys. Each key can be associated with some
data. We think of them as {key,record} pairs.

We have two dynamic operations that modify the database:

insert(key, record)

remove(key)

Abstract Data Type

We want to maintain a set of keys. Each key can be associated with some
data. We think of them as (key, record) pairs.

Operations to extract information from the database:

contains(key) check if a key is in the database
successor(key) find the next Iargest key in the database
predecessor(key) find the next smallest key in the database

For successor and predecessor we will assume the argument is already
in the database.

Abstract Data Type

A somewhat roundabout solution to the runway reservation problem.
Request for landing time ¢ comes in with plane info in data.

Run contains(t). If ¢ is already in the database, reject. Otherwise do:

insert(t,data)
prev = predecessor(t)

next = successor(t)

If ¢ —prev >k and next —t > k then we are done. Otherwise reject and

remove(t)

Binary Search Trees

Binary Search Tree

A binary search tree (BST) is a binary tree

with keys labelling the vertices. @/® @
ofie
of

Binary Search Tree

A binary search tree (BST) is a binary tree
with keys labelling the vertices.

10,

BST property: for any vertex v, CD/ @ @ @
1) all keys in the subtree rooted at the @
left child of v are less than the key at v, and

2) all keys in the subtree rooted at the
right child of v are greater than the key at V.

Binary Search Tree

A binary search tree (BST) is a binary tree
with keys labelling the vertices.

BST property: for any vertex v, CD/ @ @ @
1) all keys in the subtree rooted at the @

left child of v are less than the key at v, and

2) all keys in the subtree rooted at the
right child of v are greater than the key at V.

Question

Where is the minimum key in a BST?

Question

What integers could be placed at the question mark!?

Representation of a BST

class Node { class BST {
pupllc: private:
int key; Nodex root;

Nodex left:
Nodex right;

¥

public:
BST();
~BST();
void insert(int k):
void remove(int k):
Nodex contains(int k):
Nodex successor(int k):
Nodex predecessor(int k);

nullptr

nullptr

nullptr

root

nullptr

nullptr

nullptr

Contains

Let us first see how to check if a key is in a BST.

contains(11)

Contains

Let us first see how to check if a key is in a BST.

contains(11)

WVe start at the root and compare
11 to the key at the current vertex.

Contains

Let us first see how to check if a key is in a BST.

contains(11)

WVe start at the root and compare
11 to the key at the current vertex.

If it is larger, we go right, if it is
smaller we go left.

Contains

Let us first see how to check if a key is in a BST.

contains(11)

WVe start at the root and compare
11 to the key at the current vertex.

If it is larger, we go right, if it is
smaller we go left.

Contains

Let us first see how to check if a key is in a BST.

contains(11)

WVe start at the root and compare
11 to the key at the current vertex.

If it is larger, we go right, if it is
smaller we go left.

Contains

Let us first see how to check if a key is in a BST.

contains(11)

WVe start at the root and compare
11 to the key at the current vertex.

If it is larger, we go right, if it is
smaller we go left.

Contains

Let us first see how to check if a key is in a BST.

contains(11)

WVe start at the root and compare
11 to the key at the current vertex.

If it is larger, we go right, if it is
smaller we go left.

7\ e

Contains

Nodex contains(int k)

{

Nodex tmp = root;
while(tmp != nullptr && tmp—>key != k)
{

if(k < tmp->key)

{

tmp = tmp—>left;
}
else
{

tmp = tmp—>right;
}

return tmp,

Contains (Miss)

Let's look at another example with a key not in the database.

contains(6) tmp = Toot
Nodex contains(int k)
{ Nodex tmp = root;
while(tmp '= nullptr && tmp—>key !'= k)
{ if(k < tmp—>key)
{ tmp = tmp—>left;
glse
{ tmp = tmp—>right; /\
\ }

return tmp;

contains(6)

Nodex contains(int k)

{

Nodex tmp = root;
while(tmp !'= nullptr && tmp->key !'= k)

{
if(k < tmp—>key)

{

tmp = tmp—>left;
}
else
{

tmp = tmp—>right;
}

}

return tmp,

contains(6)

root

Nodex contains(int k)

{

Nodex tmp = root;
while(tmp !'= nullptr && tmp->key !'= k)

{
if(k < tmp—>key)
{
tmp = tmp—>left;
}
else
{
tmp = tmp—>right;
} x//
}

return tmp,

contains(6) Now tmp = nullptr and so
the while loop terminates.

It returns nullptr.

Nodex contains(int k)

{

Nodex tmp = root;
while(tmp !'= nullptr && tmp->key !'= k)
{

if(k < tmp—>key)

{

tmp = tmp—>left;
}
else
{

tmp = tmp—>right;
}

}

return tmp,

Contains: complexity

What is the complexity of contains !

In the worst case, we visit every node from the
root to the deepest leaf.

This takes time €2(h) where h is
the height of the tree.

N\ NN

The algorithm spends constant time
at each node so O(h) is an upper bound. /

The complexity is O(h) .

Insert

Insert is similar to a contains miss.

If a key is not in the set, contains ends up ata nullptr coming out of
a leaf.

We instead make this nullptr point to a hew node with the key to be
inserted.

In particular, inserted nodes are always leaves.

insert(2)

Insert: example

insert(2)

Insert: example

L7

O
"\ NN\
o

Insert: example

o0
PN
NS /\@5

7N\

insert(2)

Insert: example

insert(2)

Insert: example

insert(2)

Insert: complexity

The worst case time for insertion is
also O(h) .

Successor

Before we get into successor let's think about the BST property some more.

O Where are keys larger than !

2

AN

AN

Successor

Before we get into successor let's think about the BST property some more.

O Where are keys larger than !

2

AN

A

Successor

Before we get into successor let's think about the BST property some more.

O Where are keys larger than !

2

AN

A

Successor

Before we get into successor let's think about the BST property some more.

. Where are keys larger than !

A

AN

A

Now that we understand where the keys larger than x are, we move to
find the successor of x .

@ What is the ordering of z,y,a ?

/N

Now that we understand where the keys larger than x are, we move to
find the successor of x .

@ What is the ordering of z,y,a ?

l We know that a < y < z.

A0
O
/N (@

To find the successor of we should look in
its right subtree first.

Successor: Case 1

To find the successor of T we should look in
@ its right subtree first.

l Fact: If has a right child, the successor of 7 is
2 the minimum element of the right subtree of .

The successor is found by always going left in the
right subtree of .

AN

Case 2: no right child

@ What if = has no right child?

l Fact: If = has no right child, the successor of T is

the node where you last go left on the path from
A the root to = .

To implement successor we can remember the
last left turn as we search for = in the tree.

Successor: complexity

To find the successor of x,we first find x in the tree.

The complexity is at least 2(h), that of contains.

What work do we do beyond that of contains!

In the case = has a right child, we find the minimum in the right subtree.
This can also be done in O(h) time.

successor also has complexity ©(h) .

Remove

Let's now see how to remove a node. This is trickier than the others.

First some easy cases. Say the node to delete is a leaf.

We delete the leaf, and change the pointer
from its parent to a nullptr .

Example: remove key 5 . ®/ @

7N\ e

Remove: leaf

Let's now see how to remove a node. This is trickier than the others.

First some easy cases. Say the node to delete is a leaf.

We delete the leaf, and change the pointer
from its parent to a nullptr .

Example: delete key 5. ®/ @

7N\

Remove: one child

Similar easy case: Node to delete just has one child.

Then the child takes the place of the node to
delete.

Example: remove key 10 .

Remove: one child

Similar easy case: Node to delete just has one child.

Then the child takes the place of the node to
delete.

Example: delete key 10. @

Note this preserves the ®/ @5

BST property. VAN v "\

Remove: both children

The interesting case is where the node to delete has both children.

Let's say we want to delete key 12.

VWWe want to replace |2 by 6

some other key in the set. ®/
1) i7)
7N\
What key can we replace it @
with that causes minimal change? <

Remove: both children

What key can replace |12 and cause minimal change!?

Remove: both children

What key can replace |12 and cause minimal change!?

ldea: Replace by a node with at most one
child.

Remove: both children

What key can replace |12 and cause minimal change!?

ldea: Replace by a node with at most one

child. 9

What is a nhode with at most @/ @ @

one child whose key fits in the 7\ Y

position of |2? Q
®

Remove: both children

What is a node with at most one child whose key fits in the
position of |2?

The successor of |12 is a good candidate.

It has no left child. @/
1) 17
It is bigger than everything N\
in the left subtree of |2. @
j !4 \

It is less than everything else in the
right subtree of 12.

Remove: both children

Algorithm idea:

|) Find successor S of key to remove.

2) Make parent of s point to right

child of s . CD/
3) Make parent of node to delete /" \.

point to s, and update children x

of s with children of node to delete.

Careful with special case: successor is right child of
node to delete.

Remove: both children

Algorithm idea: Q

|) Find successor S of key to remove.

2) Make parent of s point to right
child of s . CD/

3) Make parent of node to delete /" \.

10)
point to s, and update children Q

of s with children of node to delete.

Careful with special case: successor is right child of
node to delete.

Remove: both children

Algorithm idea:

|) Find successor S of key to remove.

2) Make parent of s point to right
child of s . CD/

3) Make parent of node to delete /" \.

10)
point to s, and update children Q

of s with children of node to delete.

Careful with special case: successor is right child of
node to delete.

Complexity of remove

Complexity of remove is essentially:
|) Finding node to delete (contains).
2) Successor operation.

3) Constant number of pointer changes.

Complexity is again ©(h), where h is the height of the tree.

In-order traversal

In-order traversal

Another natural operation we may want from a BST is to extract all the keys
in order.

This can be done by an in-order traversal of the tree.

To print keys in order, we want to first print

all keys in a node's left subtree, then print the node,
then print all keys in the trees right subtree. @

In-order traversal

To print keys in order, we want to first print all keys in a node’s left subtree,
then print the node, then print all keys in the trees right subtree.

This gives a simple recursive implementation of in-order traversal.

void print(Nodex node){
if(node == nullptr)
return,
print(node—->left);
std::cout << node->key << '\n';
print(node->right);

void print(Nodex node){ calls output
if(node == nullptr)
return;
print (node->left);
std::cout << node—->key << '\n';
print(node->right);

o
a7

void print(Nodex node){ calls output
if(node == nullptr)
return;
print (node->left);
std::cout << node—->key << '\n';
print(node->right);

o
a7

print(root)

void print(Nodex node){ calls output
if(node == nullptr)
return;
print(node—->1left); print(A)
std::cout << node—->key << '\n';
print(node->right);

o
a7

print(root)

void print(Nodex node){ calls output
if(node == nullptr)

Ceturn: print(root)
print(node->left); print(A)
std::cout << node->key << '\n';
print(node->right); print(B)

o
a7

void print(Nodex node){ calls output
if(node == nullptr)

Ceturn: print(root)
print(node->left); print(A)
std::cout << node->key << '\n';
print(node->right); print(B)

print(nullptr)

o
a7

void print(Nodex node){ calls output
if(node == nullptr)

Ceturn: print(root)
print(node->left); print(A)
std::cout << node->key << '\n';
print(node->right); print(B)

o
a7

void print(Nodex node){ calls output
if(node == nullptr)

Ceturn: print(root)
print(node->left); print(A)
— std::cout << node->key << '\n';
print(node->right); print(B)

h

o
a7

void print(Nodex node){ calls output

1f(node == nullptr :
(Ceturn: ptr) print(root) 1
print(node->left); print(A)
— std::cout << node->key << '\n';
print(node->right); print(B)

h

o
a7

void print(Nodex node){ calls output

if(node == nullptr :
Ceturn: ptr) print(root) 1
print (node->left); print(A)
std::cout << node->key << '\n';
— print(node—>right); print(B)

h

o
a7

void print(Nodex node){ calls output

if(node == nullptr :
Ceturn: ptr) print(root) 1
print(node->left); print(A)
std::cout << node->key << '\n';
print(node->right); print(B)

print(nullptr)

o
a7

void print(Nodex node){ calls output

if(node == nullptr :
Ceturn: ptr) print(root) 1
print(node->left); print(A)
std::cout << node->key << '\n';
print(node->right); print(B)

o
a7

void print(Nodex node){ calls output

if(node == nullptr) .
return: print(root) 1
print(node—>left); prj_nt(A)

std::cout << node->key << '\n';
print(node->right);

o
a7

void print(Nodex node){ calls output

if(node == nullptr) .
return: print(root) 1
print(node—>left); prj_nt(A)

— std::cout << node->key << '\n';
print(node->right);
s

o
a7

void print(Nodex node){ calls output

if(node == nullptr) .
return: print(root) é
print(node—>left); prj_nt(A)

— std::cout << node->key << '\n';
print(node->right);
s

o
a7

void print(Nodex node){ calls output

if(node == nullptr) .
return: print(root) é
print(node—>left); prj_nt(A)

std::cout << node->key << '\n';
— print(node->right);

o
a7

void print(Nodex node){ calls output

1f(node == nullptr :

(return; ptr) print(root) 1
print(node->left); print(A) :
std::cout << node->key << '\n';
print(node->right); print(C)

o
a7

void print(Nodex node){ calls output

1f(node == nullptr .

(return; PLr print(root) |
print(node->1left); prj_nt(A) 3
std::cout << node->key << '\n'; D
print(node->right); print(C)

o
a7

void print(Nodex node){ calls output

if(node == nullptr) .

return: print(root) é
print(node—>left); print(A)
std::cout << node->key << '\n'; D

print(node->right);

o
a7

void print(Nodex node){ calls output

1f(nggiu?;nullptr) print(root) 1
print(node->1left); S
std::cout << node->key << '\n'; D

print(node->right);

o
a7

void print(Nodex node){ calls output

if(node == nullptr) . 1

return: print(root) X
print(node->1left);

— std::cout << node->key << '\n'; D

print(node->right);

o
a7

h

void print(Nodex node){ calls output

1f(node == nullptr .
(return; ptr) print(root) 1
print (node->left); 3
— std::cout << node->key << '\n'; D
print(node->right); 7

h

o
a7

void print(Nodex node){ calls output

1f(node == nullptr .

(return; PLr print(root) |
print (node->left); 3
std::cout << node->key << '\n'; D

— print(node->right); 7

h

o
a7

void print(Nodex node){ The complexity is ©(n) .
if(node == nullptr)

return,;
print (node->left);
std::cout << node->key << '\n';
print(node->right);

o e
a”

void print(Nodex node){ The complexity is O(n).
if(node == nullptr)

return,;
print (node->left);
std::cout << node->key << '\n';
print(node->right);

@/@\@ T(n)
ol

7N\ SN SN N

<

void print(Nodex node){ ity is ©(n) .
if(node == nullptr) 0(1) The complexity is ()
return,
print (node->left);
std::cout << node->key << '\n';
print(node->right);

@/@\@ T(n)
ol

7N\ SN SN N

<

void print(Nodex node){ ity is O(n) .
if(node == nullptr) 0(1) The complexity is ()
return,
print(node—>left);
std::cout << node->key << '\n'; O(1)
print(node->right);

@/@)\@ T'(n) <
of

7N\ SN SN N

h

void print(Nodex node){ ity is O(n) .
if(node == nullptr) O(l) The complexity is ()
return;
print (node->left); T'(k)
std::cout << node->key << '\n'; O(1)
print(node->right);

@/@)\@ T'(n) <
of

7N\ SN SN N

h

void print(Nodex node){ ity is O(n) .
if(node == nullptr) O(1) The complexity is O (1)
return;
print (node->left); T'(k)
std::cout << node->key << '\n'; ()(1)
print(node->right); T'(n — Lk —1)

off g

7N\ SN SN N

void print(Nodex node){ ity is O(n) .
if(node == nullptr) O(1) The complexity is O (1)
return;
print (node->left); T'(k)
std::cout << node->key << '\n'; ()(1)
print(node->right); T'(n — Lk —1)

< Tk)+T(n—k—1)+0O(1)

off g

7N\ SN SN N

T'(n) < Tk)+T(n—k—1)+ O(1)

Let's simplify the constants and say that 7(1) = 1 and
Tn)=Tk)+T(n—k—1)+1

Then you can directly verify that T'(n) = n .

o e
T o

20

7\

Pre-order and Post-order traversal

void preorder(Nodex node){ void postorder(Nodex node){
if(node == nullptr) if(node == nullptr)
return; return;
std::cout << node->key << '\n'; postorder(node—>left);
preorder(node—>left); postorder(node->right);
preorder(node->right); std::cout << node—>key << '\n';
} }

@/CD\ pre-order: 7,3,1,95,13,11,20
@ post-order: 1,5,3,11,20,13,7
o cY e

N\

BST Destructor

In the destructor for a BST we want to free the memory allocated to each
node.

WVe traverse through the tree deleting pointers to the nodes.

BST Destructor

In the destructor for a BST we want to free the memory allocated to each
node.

WVe traverse through the tree deleting pointers to the nodes.

What kind of traversal should we use
for this?
N\

BST Destructor

In the destructor for a BST we want to free the memory allocated to each
node.

WVe traverse through the tree deleting pointers to the nodes.

We don't want to delete the node with
key |3 before deleting its children.

What kind of traversal should we use
for this?
N\

Height of a BST

Height of a BST

All of our operations have complexity ©(h), where h is the height of
the tree.

To understand the complexity of these algorithms we have to understand the
height of a BST.

When we insert n elements what is the maximum height of the tree?

Worst case

Say that we insert elements in the
order 3,7, 10, 15, 22.

In this case every vertex has at most
one child.

The height is n — 1 which is as large as possible.

The worst case is when the elements
are inserted in sorted order!

BSTs do not perform well in this scenario.

Best case

What is the best case height of the tree?

In the best case, for every vertex the height
of its left and right subtrees is the same.

This is known as a full binary tree and is 6 O
only possible if n =2%—1 . N\ N/ TN
We always have n < 2"™' —1 andso h>log(n+1)—1 .

Our operations will take time at least 2(logn).

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

In what order should we insert these keys in

to obtain a full binary tree? ,

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

In what order should we insert these keys in

to obtain a full binary tree? , \

In a full binary tree, for any vertex the N d\ O
number of nodes in the left subtree and 4 a
right subtree is the same.

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

In what order should we insert these keys in

to obtain a full binary tree? \

In a full binary tree, for any vertex the N d\ O
number of nodes in the left subtree and 4 /N
right subtree is the same.

If the root has key & how many nodes will be in its left subtree?

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

In what order should we insert these keys in

to obtain a full binary tree? \

In a full binary tree, for any vertex the N d\ O
number of nodes in the left subtree and 4 /N
right subtree is the same.

If the root has key & how many nodes will be in its left subtree?

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

10,

In what order should we insert these keys in ‘
to obtain a full binary tree? \
In a full binary tree, for any vertex the /N S d\ /O\

number of nodes in the left subtree and
right subtree is the same.

If the root has key & how many nodes will be in its left subtree?

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

10,

In what order should we insert these keys in ‘
to obtain a full binary tree? \
In a full binary tree, for any vertex the /N S d\ /O\

number of nodes in the left subtree and
right subtree is the same.

If the root has key & how many nodes will be in its left subtree?

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

10,

In what order should we insert these keys in @
to obtain a full binary tree? \
In a full binary tree, for any vertex the /N S d\ /O\

number of nodes in the left subtree and
right subtree is the same.

If the root has key & how many nodes will be in its left subtree?

Best case

Say that we have keys 3,7,9, 10, 12, 15, 22.

In what order should we insert these keys in
to obtain a full binary tree! 6 @
In a full binary tree, for any vertex the /j\ / @\

number of nodes in the left subtree and
right subtree is the same.

If the root has key & how many nodes will be in its left subtree?

Random case

If the keys come in a random order, the expected
height of a BST is O(logn) .

Intuition: we do not expect the first key to \
be the median, but with good probability it Cj/ 6 O
ill b the middle.
Wi € near tne mi S / \ / \ / \
90% chance

» ’I

570 570
See Theorem 12.4 of [CLRS] for a proof.

AVL Trees

Balanced Binary Trees

It is desirable to maintain a tree height of O(log n) when the tree
has 71 keys.

We now look at a way of actively ensuring this property.

Whenever we insert or remove a key, if the tree becomes too unbalanced
we change the structure to fix it.

There are several (related) techniques to do this: AVL trees, 2-3 trees,
AA trees, red-black trees.

These achieve O(log n) worst-case time for all our operations.

AVL trees

We will discuss AVL trees, named after Adelson-Velsky and Landis.
We keep track of the height of each node.

The height of a node is the maximum
height of its children plus one.

To avoid a special case, nullptr points
to a node of height -1.

AVL trees

We will discuss AVL trees, named after Adelson-Velsky and Landis.
We keep track of the height of each node.

The height of a node is the maximum
height of its children plus one.

To avoid a special case, nullptr points
to a node of height -1.

AVL trees

We will discuss AVL trees, named after Adelson-Velsky and Landis.
We keep track of the height of each node.

The height of a node is the maximum
height of its children plus one.

To avoid a special case, nullptr points
to a node of height -1.

AVL trees

We will discuss AVL trees, named after Adelson-Velsky and Landis.
We keep track of the height of each node.

The height of a node is the maximum
height of its children plus one.

To avoid a special case, nullptr points
to a node of height -1.

AVL trees

We will discuss AVL trees, named after Adelson-Velsky and Landis.
We keep track of the height of each node.

The height of a node is the maximum
height of its children plus one.

To avoid a special case, nullptr points
to a node of height -1.

AVL trees

We will discuss AVL trees, named after Adelson-Velsky and Landis.
We keep track of the height of each node.

The height of a node is the maximum
height of its children plus one.

To avoid a special case, nullptr points
to a node of height -1.

AVL trees

We will discuss AVL trees, named after Adelson-Velsky and Landis.
We keep track of the height of each node.

The height of a node is the maximum
height of its children plus one.

To avoid a special case, nullptr points
to a node of height -1.

AVL trees

An AVL tree maintains the property that left and right
children differ in height by at most one.

Call the balance factor of a node to be the height of its right subtree
minus the height of its left subtree.

We say a node has the AVL property if it balance factor isin {—1,0, 1}.

In an AVL tree every node has the AVL property.

Balance Factor

Balance Factor

Height of an AVL
tree

AVL trees

In 2 moment we will see how to insert keys and maintain the AVL property.

First let's see why we would want to do this.
Key fact: an AVL tree with 1 nodes has height at most 2logn .

How do we maximise the height of an AVL tree with 7 nodes!

How do we minimise the number of nodes in an AVL tree with height h ?

Ssmall examples

Let T'(h) be the minimum number of nodes in an AVL tree of height /.

Ssmall examples

Let T'(h) be the minimum number of nodes in an AVL tree of height /.

small examples

Let T'(h) be the minimum number of nodes in an AVL tree of height /.

T(1) = 2 T(3) =1 SN
E fa%\)

General Case

Let T'(h) be the minimum number of nodes in an AVL tree of height /.

Clearly T'(h) is an increasing function.

One child of the root should have height i — 1 and the other h — 2.

T(hQ)A T(h—1)

T(h) =1+ T(h—1)+T(h—2)

3 333
GEECORCRC

AV A VAR
N N B

[V

DO
>
~—
)

Simple Bound

T(h) =1+T(h—1)+T(h—2)
> 9T (h — 2)

Simple Bound

T(h) =1+T(h—1)+T(h—2)
> 9T(h — 2)

In a tree with 1 nodes its height h must satisfy

n > T(h) > 2"/2

T(0) = 1
T(2) > 2
T(4) > 4
T(h) > 2h/?

Simple Bound

T(h) =1+T(h—1)+T(h—2)
> 2T (h — 2)

In a tree with 1 nodes its height h must satisfy

n > T(h) > 2"/2

> 2logn > h

Simple Bound

T(h) =1+T(h—1)+T(h—2)
> 2T (h — 2)

In a tree with 1 nodes its height h must satisfy

n > T(h) > 2"/2

> 2logn > h

An AVL tree with 1 nodes has height < 2logn .

Fibonacci numbers

T(h) =1+T(h—1)+T(h—2)

This looks a lot like the recurrence for Fibonacci numbers!

O(1 23] 4 5! 6 7 &
Fibonacci | O | 1 | 1| 2| 3 5! 8 | 13 | 21
T(h) 1 12147112120 33 | 54 | 8

This gives a better upper bound on the depth of roughly 1.44 logn .

T(h) = F(h+3) — 1

AVL Insert

AVL insert

Say that we have an AVL tree. We want to insert a key and keep the
AVL property.

We first insert the key in the usual way.
The insertion changes the height of a node by at most one.

After usual BST insertion, each node has balance factor in {—2,—1,0,1,2}.

We fix the tree from the bottom up to restore the AVL property.

Rotation

After usual BST insertion, each node has balance factor in {—2,—1,0,1, 2}.
We fix the tree from the bottom up to restore the AVL property.

Let's see how to fix a minimal violating node---all its children satisfy the
AVL property.

The key to this fix is an operation on BSTs called rotation.

Leit Rotate

This is a left rotation of T .
Left rotate can be done with a constant number of pointer changes.

Key fact: Left rotation preserves the BST property.

Everything in I3 is greater than the key at and less than the key at V.

Right Rotate

Right rotation is the inverse of left rotation. This is a right rotation of U .

It also preserves the BST property.

Example: Leit Rotate A@“” - S @A
AVANAYA

92/ \gﬁ D 9{ '\Q

Example: Leit Rotate {:Eq‘ :{i

This restores the AVL property!

General Case 1

Assume Z is a minimal violating node with balance factor 2.
For case | we further assume h¢o > hp.

In this case a left rotation restores the AVL property.

We know that 1 + hec = ha +2 so hy = hg — 1.
1+ ho

General Case 1

Assume Z is a minimal violating node with balance factor 2.

For case | we further assume h¢o > hp.

This means h4 = h¢g — 1 andso max{h,hp} € {hc —1,hc}.

Case 2: Example

The case we haven't handled is where hg > h¢ .

Case 2: Example

The case we haven't handled is where hg > h¢ .

Right rotate ’
on |0. - @
N

Case 2: Example

The case we haven't handled is where hg > h¢ .

Right rotate ’
on |0. - @
N

Wiait, the tree is still not AVL!

Case 2: Example

The case we haven't handled is where hg > h¢ .

Right rotate ’
on |0. - @
N

Wiait, the tree is still not AVL!

But now we have reduced it to Case |.

Case 2: Example

The case we haven't handled is where hg > h¢ .

Right rotate 0 Left rotate
on 0. - @ on 7.
e

Wiait, the tree is still not AVL!

But now we have reduced it to Case |.

General Case 2

Assume Z is a minimal violating node with balance factor 2.

Incase 2 hg = ho + 1 whichmeans h4 = h¢.

General Case 2

Assume Z is a minimal violating node with balance factor 2.

Incase 2 hg = ho + 1 whichmeans h4 = h¢.

h 2+ hce Ve need to look inside
AT the B tree now. A /

General Case 2

Assume Z is a minimal violating node with balance factor 2.

Incase 2 hg = ho + 1 whichmeans h4 = h¢.

Both of), £/ have height < h¢ .

One of them has height /¢ .

AV

General Case 2

Assume Z is a minimal violating node with balance factor 2.

Incase 2 hg = ho + 1 whichmeans h4 = h¢.

General Case 2

Assume Z is a minimal violating node with balance factor 2.

Incase 2 hg = ho + 1 whichmeans h4 = h¢.

Right rotate
on Y

General Case 2

Assume Z is a minimal violating node with balance factor 2.

Incase 2 hg = ho + 1 whichmeans h4 = h¢.

—p

Right rotate
on Y

A A Now we are back in case one! A

Case 2: Summary

Right rotate
on

Case 2 can be solved with 2 rotations.

We right rotate on Y, and then left rotate on T .

AVL insertion:
summary

We have now seen how to repair the balance factor of a single node
with a constant number of rotations.

Inserting a node can upset the balance factor of any node on the path from
the insertion point to the root.

We may have to do this repair ©(h) times.

This still gives us O(log n) insertion time in an AVL tree.

AVL tree: summary

An AVL tree gives (O (log n) worst case time for all our operations.

operation | worst case
insert O(logn)
remove O(logn)

contains | Of(logn)

O(logn)

successor logn

