data structures & algorithms
Tutorial 10

(Week 10)



Burning questions from
the previous tutorial?



week’s 1lab

» Binary Search Tree (BST)
e Common BST methods
« BST Traversals
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Each circle 1s called a node

each node has two children
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Each circle 1s called a node

each node has two children
and one parent
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We call all the nodes with no children leaf nodes
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Each node’s children define a
left subtree and a right subtree
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This 1s the left child of the root
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The top node 1s called the root
This 1s the left child of the root
and this 1s the right child of the root




Binary Search Tree

O
& (&)
OO &

Left child 1s less than 1ts parent and the
right child 1s greater than 1ts patent
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You can think of a binary tree as an extension
of a linked 1list
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You can think of a binary tree as an extension
of a linked 1list
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left data right

struct Node {
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left data right

struct Node {

T data {}; S
Nodex left {nullptr};

Nodex right {nullptr};

} Node
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left data right

struct Node {

T data {}; S
Nodex left {nullptr};

Node* right {nullptr};
Node* parent {nullptr}; NOde




Binary Search Tree

left data right

struct Node {
T data {}; 3
Nodex left {nullptr};
Node*x right {nullptr};
Node* parent {nullptr}; NOde

Node () {}
Node(T d, Node* node = nullptr) : data {d}, parent {node} {}




Now time for a very important
question...




f a binary tree wore pants would he
wear them

Ike this I’ Ike this?




Ok now time to look at some common
methods for binary search trees
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To 1nsert an element we start at the root
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Now we compare 1f the new node 1s greater or
Less than the current node
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Now we compare 1f the new node 1s greater or
Less than the current node
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Our new node 1s less than the current node, but
the current node does not have a left child
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So we have found the place to i1nsert the node
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To find a node by 1ts key we agaln
start at the top
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If the key 1s greater than the current node go
right, otherwlse go left
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Bingo!
If the key 1s equal to current node then we have found 1t
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But say we were looking for 5 1nstead
Then we would need to go right
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But the right child 1s null!
So this tells us that 5 i1s not 1in the BST
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min()
Agaln we start at the root
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min()
But now we just always go left
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min()
Once we can’t go left anymore we have found the min
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Starting at the root 1f we visit the:
« Lleft child we traverse the left subtree
 r1ght child we traverse the right subtree
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Tree

Preordenr
root Left

Inorder
Left root

Postorder
left right

right

right

root
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Preorder
To do a preorder traversal walk along the yellow line and
write down node each time you encounter a blue dot
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Preordenr
6, 3, 1, 4, 9, 8, 11]
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Inorder
To do an 1norder traversal walk along the yellow line and
write down node each time you encounter a purple dot
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Inorder
(1, 3, 4, 6, 8, 9, 11]
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start end

@ left — right — root
S, G,
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Postorder
To do an postorder traversal walk along the yellow line and
write down node each time you encounter a red dot
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start end

@ left — right — root
S, G,
G @ (12

Postorder
(1, 4, 3, 8, 11, 9, 6]
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[ 6 8 10 11 12 15 16 17 20 25 27 ]
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[ 6 8 10 11 12 15 16 17 20 25 27 ]
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<:> successor(10)

Case 1: Node has a right subtree

 Find min of right subtree

[ 6 8 10 11 12 15 16 17 20 25 27 ]
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[ 6 8 10 11 12 15 16 17 20 25 27 ]
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<:> successor(8)

Case 2: Node 1s left child
« Return the parent
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[ 6 8 10 11 12 15 16 17 20 25 27 ]
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[ 6 8 10 11 12 15 16 17 20 25 27 ]
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<:> successor(12)

Case 3: Node 1s right child

- go to nearest ancestor for

which the given node 1s 1n

@ @ @ the left subtree

[ 6 8 10 11 12 15 16 17 20 25 27 ]



