data structures & algorithms
Tutorial 10

(Week 10)

Burning questions from
the previous tutorial?

week’s 1lab

» Binary Search Tree (BST)
e Common BST methods
« BST Traversals

Binary Search Tree

O
& (&)
OO &

Binary Search Tree

O
& (&)
OO &

Each circle 1s called a node

Binary Search Tree

O
& (&)
O ® &

Each circle 1s called a node

each node has two children

Binary Search Tree

O
& (&)
O ® &

Each circle 1s called a node

each node has two children
and one parent

Binary Search Tree

O
& (&)
© © €

We call all the nodes with no children leaf nodes

Binary Search Tree

O
O &)
® @ &

Each node’s children define a
left subtree and a right subtree

Binary Search Tree

O
& (&)
OO &

The top node 1s called the root

Binary Search Tree

O
& (&)
OO &

The top node 1s called the root
This 1s the left child of the root

Binary Search Tree

O
& &)
OO &

The top node 1s called the root
This 1s the left child of the root
and this 1s the right child of the root

Binary Search Tree

O
& (&)
OO &

Left child 1s less than 1ts parent and the
right child 1s greater than 1ts patent

Binary Search Tree

(&)
& &)
OO &

Left child 1s less than 1ts parent and the
right child 1s greater than 1ts patent

Binary Search Tree

O
O (&)
® © &

Left child 1s less than 1ts parent and the
right child 1s greater than 1ts patent

Binary Search Tree

O
& (&)
OO &

Left child 1s less than 1ts parent and the
right child 1s greater than 1ts patent

Binary Search Tree

IR
Vs ™

O 2N

1 % 8 11

You can think of a binary tree as an extension
of a linked 1list

Binary Search Tree

SN

You can think of a binary tree as an extension
of a linked 1list

Binary Search Tree

left data right

E
\//77Nodexi\\

Binary Search Tree

left data right

struct Node {

} | 5
~f/77Node\<\\

Binary Search Tree

left data right

struct Node {

T data {}; S
Nodex left {nullptr};

Nodex right {nullptr};

} Node

Binary Search Tree

left data right

struct Node {

T data {}; S
Nodex left {nullptr};

Node* right {nullptr};
Node* parent {nullptr}; NOde

Binary Search Tree

left data right

struct Node {
T data {}; 3
Nodex left {nullptr};
Node*x right {nullptr};
Node* parent {nullptr}; NOde

Node () {}
Node(T d, Node* node = nullptr) : data {d}, parent {node} {}

Now time for a very important
question...

f a binary tree wore pants would he
wear them

Ike this I’ Ike this?

Ok now time to look at some common
methods for binary search trees

Binary Search Tree

(7)
insert(7) <:>

& (&)
O © &

To 1nsert an element we start at the root

Binary Search Tree

(7)
insert(7) <:>

& (&)
O © &

Now we compare 1f the new node 1s greater or
Less than the current node

Binary Search Tree

insert(7) <:> <:>
(3 ()
OO &

Now we compare 1f the new node 1s greater or
Less than the current node

Binary Search Tree

insert(7) <:>
(3 @ >
OO &

Our new node 1s less than the current node, but
the current node does not have a left child

Binary Search Tree

insert(7) (6)
© O
OO 1y
(D

So we have found the place to i1nsert the node

Binary Search Tree
)

find(4) (6)
© (2
OO (19

To find a node by 1ts key we agaln
start at the top

Binary Search Tree

find (4) (:)

l

& (&)
O © &

If the key 1s greater than the current node go
right, otherwlse go left

Binary Search Tree

find(4) (6)
O C
@ (19

Bingo!
If the key 1s equal to current node then we have found 1t

Binary Search Tree

find(5) (6)
ORI O
OO (19

But say we were looking for 5 1nstead
Then we would need to go right

Binary Search Tree

find(5) (6)
ORI O
OO (19

But the right child 1s null!
So this tells us that 5 i1s not 1in the BST

Binary Search Tree
)

(&
& (&)
O © &

min()
Agaln we start at the root

Binary Search Tree

O
& (&)
O © &

min()
But now we just always go left

Binary Search Tree

o
NS 0
® © @

min()
Once we can’t go left anymore we have found the min

Binary Search Tree

Traversal

O
& &)
©® © &

Starting at the root 1f we visit the:
« Lleft child we traverse the left subtree
 r1ght child we traverse the right subtree

Binary Search

Traversal

&
O ®

O

&)
(y

Tree

Preordenr
root Left

Inorder
Left root

Postorder
left right

right

right

root

Binary Search Tree

start end

<::> root — left — right
O, £
OO 41y

Preorder
To do a preorder traversal walk along the yellow line and
write down node each time you encounter a blue dot

Binary Search Tree

start e

<::> root — left — right
O, £
OO 41y

Preordenr
6, 3, 1, 4, 9, 8, 11]

Binary Search Tree

start end

@ left root right
© &
VN ©) @

Inorder
To do an 1norder traversal walk along the yellow line and
write down node each time you encounter a purple dot

Binary Search Tree

start end

@ left root right
© &
VN ©) @

Inorder
(1, 3, 4, 6, 8, 9, 11]

Binary Search Tree

start end

@ left — right — root
S, G,
G @ (12

Postorder
To do an postorder traversal walk along the yellow line and
write down node each time you encounter a red dot

Binary Search Tree

start end

@ left — right — root
S, G,
G @ (12

Postorder
(1, 4, 3, 8, 11, 9, 6]

Binary Search Tree

Binary Search Tree

()
@ @ &
& O <)

[6 8 10 11 12 15 16 17 20 25 27]

Binary Search Tree

<:> successor(10)

@ @
& O <)

[6 8 10 11 12 15 16 17 20 25 27]

Binary Search Tree

<:> successor(10)

Case 1: Node has a right subtree

 Find min of right subtree

[6 8 10 11 12 15 16 17 20 25 27]

Binary Search Tree

<:> successor(8)
@ @
OB <)

[6 8 10 11 12 15 16 17 20 25 27]

Binary Search Tree

<:> successor(8)

Case 2: Node 1s left child
« Return the parent

& O <)

[6 8 10 11 12 15 16 17 20 25 27]

Binary Search Tree

<:> successor(12)

@ @ &
& O <)

[6 8 10 11 12 15 16 17 20 25 27]

Binary Search Tree

<:> successor(12)

Case 3: Node 1s right child

- go to nearest ancestor for

which the given node 1s 1n

@ @ @ the left subtree

[6 8 10 11 12 15 16 17 20 25 27]

