
data structures &
Tutorial 10

algorithms

1

97

2 6 9

5115

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

(Week 10)

Burning questions from 
the previous tutorial?

This week’s lab

Trees

 Binary Search Tree (BST
 Common BST method
 BST Traversals

Binary Search Tree

6

3

1 4

9

8 11

Binary Search Tree

6

3

1 4

9

8 11

Each circle is called a node

Binary Search Tree

6

3

1 4

9

8 11

Each circle is called a node

each has node two children

Binary Search Tree

6

3

1 4

9

8 11

Each circle is called a node

each has node two children

and one parent

Binary Search Tree

6

3

1 4

9

8 11

We call all the nodes with no children leaf nodes

Binary Search Tree

6

3

1 4

9

8 11

Each node’s children define a

 and a left subtree right subtree

Binary Search Tree

6

3

1 4

9

8 11

The top node is called the root

Binary Search Tree

6

3

1 4

9

8 11

This is the of the left child root

The top node is called the root

Binary Search Tree

6

3

1 4

9

8 11

The top node is called the root

This is the of the left child root

and this is the of the right child root

Binary Search Tree

6

3

1 4

9

8 11

left child is less than its and the

 is greater than its patent

parent

right child

Binary Search Tree

6

3

1 4

9

8 11

left child is less than its and the

 is greater than its patent

parent

right child

Binary Search Tree

6

3

1 4

9

8 11

left child is less than its and the

 is greater than its patent

parent

right child

Binary Search Tree

6

3

1 4

9

8 11

left child is less than its and the

 is greater than its patent

parent

right child

Binary Search Tree

You can think of a binary tree as an extension

of a linked list

6

9

1 84 11

3

Binary Search Tree

You can think of a binary tree as an extension

of a linked list

6

9

1 84 11

3

Binary Search Tree

3

data rightleft

Node

Binary Search Tree

3

data rightleft

Node

struct

*

Node
T
Node
Node
Node

T Node

{

{};

* {nullptr};

* {nullptr};

* {nullptr};

() {}

(, = nullptr) : { }, { } {}

}

Binary Search Tree

3

data rightleft

Node

struct

*

 data
 left
 right
 parent

 data d parent node

Node
T
Node
Node
Node

T Node

{

{};

* {nullptr};

* {nullptr};

* {nullptr};

() {}

(, = nullptr) : { }, { } {}

}

Binary Search Tree

3

data rightleft

Node

struct

*

 data
 left
 right
 parent

 data d parent node

Node
T
Node
Node
Node

T Node

{

{};

* {nullptr};

* {nullptr};

* {nullptr};

() {}

(, = nullptr) : { }, { } {}

}

Binary Search Tree

3

data rightleft

Node

struct

*

 data
 left
 right
 parent

 data d parent node

Node
T
Node
Node
Node

T Node

{

{};

* {nullptr};

* {nullptr};

* {nullptr};

() {}

(, = nullptr) : { }, { } {}

Node
Node d node

}

Now time for a very important
question...

Ok now time to look at some common
methods for binary search trees

Binary Search Tree

To insert an element we start at the root

6

3

1 4

9

8 11

insert()7

7

Binary Search Tree

Now we compare if the new node is greater or
less than the current node

6

3

1 4

9

8 11

insert()7

7

Binary Search Tree

Now we compare if the new node is greater or
less than the current node

6

3

1 4

9

8 11

insert()7
7

Binary Search Tree

Our new node is less than the current node, but
the current node does not have a left child

6

3

1 4

9

38 11

insert()7

7

Binary Search Tree

So we have found the place to insert the node

6

3

11 4

9

38 11

insert()7

7

Binary Search Tree

To find a node by its key we again
start at the top

6

3

11 4

9

8 11

find()4

->

Binary Search Tree

If the key is greater than the current node go
right, otherwise go left

6

3

11 4

9

8 11

find()4 ->

Binary Search Tree

Bingo!

If the key is equal to current node then we have found it

6

3

11 4

9

8 11

find()4

->

Binary Search Tree

But say we were looking for 5 instead

Then we would need to go right

6

3

11 4

9

8 11

find()5

->

Binary Search Tree

But the right child is null!

So this tells us that 5 is not in the BST

6

3

11 4

9

8 11

find()5

->

Binary Search Tree

Again we start at the root

6

3

11 4

9

8 11

min()

->

Binary Search Tree

But now we just always go left

6

3

11 4

9

8 11

min()

->

Binary Search Tree

Once we can’t go left anymore we have found the min

6

3

11 4

9

8 11

min()

->

Binary Search Tree

6

3

11 4

9

8 11

Traversal

Starting at the if we visit the
 we traverse the
 we traverse the

root
 left child left subtre
 right child right subtree

Binary Search Tree

6

3

11 4

9

8 11

Traversal
Preorder

Inorder

Postorder

root -> ->left right

left -> ->root right

left -> ->right root

Binary Search Tree

6

3

4

9

8 111

start end

Preorder

blue dot

To do a preorder traversal walk along the yellow line and

write down node each time you encounter a

root -> ->left right

Binary Search Tree

6

3

4

9

8 111

start end

Preorder

[6, 3, 1, 4, 9, 8, 11]

root -> ->left right

Binary Search Tree

6

3

4

9

8 111

start end

Inorder

purple dot

To do an inorder traversal walk along the yellow line and

write down node each time you encounter a

left -> ->root right

Binary Search Tree

6

3

4

9

8 111

start end

Inorder

[1, 3, 4, 6, 8, 9, 11]

left -> ->root right

Binary Search Tree

6

3

4

9

8 111

start end

Postorder

red dot

To do an postorder traversal walk along the yellow line and

write down node each time you encounter a

left root-> -> right

Binary Search Tree

6

3

4

9

8 111

start end

Postorder

[1, 4, 3, 8, 11, 9, 6]

left root-> -> right

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

15

10 20

17 258

6 16 27

12

11

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

1510 2017 2586 16 271211][

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

1510 2017 2586 16 271211][

successor()10

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

1510 2017 2586 16 271211][

successor()10

Case 1: Node has a right subtre
 Find min of right subtree

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

1510 2017 2586 16 271211][

successor()8

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

1510 2017 2586 16 271211][

successor()8

Case 2: Node is left chil
 Return the parent

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

1510 2017 2586 16 271211][

successor()12

Binary Search Tree

15

310 20

17 258

6 16 27

12

11

1510 2017 2586 16 271211][

successor()12

Case 3: Node is right chil
 go to nearest ancestor for
which the given node is in
the left subtree

