Topological dSort
and DAGs



Directed Graphs

We have mostly talked about undirected graphs so far. Today will be all
about directed graphs.

Directed edges naturally arise in many applications:

Graph of a road network: one way streets mean we need directed edges

Broadway &¢——————Broadway &
Wattle ——— Harris



Directed Graphs

We have mostly talked about undirected graphs so far. Today will be all
about directed graphs.

Directed edges naturally arise in many applications:

Graph of exchange rates:
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Directed Graphs

The first application we discuss today is job scheduling.

Imagine a graph where the vertices are labeled by tasks that need to be done.

If task A must be performed before task B then we can put a directed edge

from A to B.
trousers

.

socks ——» shoes

Such a graph represents precedence constraints.
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What is a path to graduation!?

In what order can | take these classes and respect all 31269
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Topological Order

A path to graduation is given by a topological order.

A topological order of the vertices is a ordering of all the vertices such that if
there is an edge (u,v) in the graph then © must come before v in the
ordering.

trousers /\
\ trousers socks =™ shoes

socks —» shoes |
first second third



Topological Order

A topological order of the vertices is a linear order where if there is an
edge (u,v) in the graph then © must come before v in the ordering.

There can be more than one topological ordering of the vertices.

trousers /\
\ socks  trousers —» shoes

socks ——» shoes
first second third
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Topological Order

When does a topological order exist?

Can it be given for any directed graph!

What could be a possible obstruction to giving a topological order?
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Now there is no way to graduate!
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Directed Acyclic Graph
(DAG)

A graph with a directed cycle cannot have a topological order.

A directed graph without any directed cycles is called a directed acyclic
graph (DAQG).

This is a DAG.

C
/ \ A directed cycle has to respect the
orientation of edges.
A I5;



Undirected vs. Directed

An undirected graph without a cycle is a forest, a disjoint union of trees.

/.

It will always have at most 1 — 1 edges.




Undirected vs. Directed

A DAG can have lots of edges.

There is a directed edge from
every vertex on the left to
every vertex on the right.

This kind of graph on n vertices
has n°/4 edges.



A DAG has a
topological order

It turns out a directed cycle is the only obstruction to a graph having a
topological order.

Fact: A directed graph has a topological order if and only if it is a DAG.

We have already seen that a graph with a directed cycle has no topological
order.

We are going to see that a DAG has a topological order by giving an
algorithm to find it!



Is a graph a DAG?

Fact: A directed graph has a topological order if and only if it is a DAG.

We begin with an algorithm to determine whether or not an input graph
has a directed cycle.

That is, we determine whether or not the graph is a DAG.

This problem is intimately related to finding a topological order.



Is a graph a DAG?

In case the graph is not a DAG, the algorithm will certify this by outputting
a directed cycle.

We cannot efficiently output all the directed cycles in a graph, as there can
be exponentially many.

The number of cycles in this graph is
related to the Fibonacci numbers.



Detecting a
Directed Cycle



Depth-First Search

The algorithm we will use to detect a directed cycle is based on depth-first
search.

We talked before about DFS in the context of undirected graphs.
Let's now look at an example in a directed graph.

To solve the cycle detection problem we are going to keep track of when
we start and finish exploring a vertex.



Depth-First Search

bool marked[N] {};

void dfs()
{
for(unsigned v = 0; v < N; ++v)
. {
OI 3 1f(!marked[Vv])
|:2 { tte vieit(w)
S visit(v);

2:3 } -
3: | } }
4.5 72 |
5:

Adjacency List



Depth-First Search

bool marked[N] {};

void dfs visit(unsigned v)

{
marked[v] = true;
for(auto u : arr([v])
O: 13 {
. 1f(!marked[u])
12 {
2: 3 dfs visit(u);
}
3: | }
4:572 | '
S:

Adjacency List



Depth-First Search

bool marked[N] {};

void dfs visit(unsigned v)

{

marked[v] = true;
for(auto u : arr([v])

{

Definition:Vertex u is reachable from if(!marked[u])
vertex v if and only if there is a directed dfs visit(u);
path from v to u. I

}

Fact: dfs_visit(v) marks exactly those vertices u reachable from wv.



Depth-First Search

bool marked[N] {};

void dfs visit(unsigned v)

{
marked[v] = true;
for(auto u : arr([v])
O: 13 {
. 1f(!marked[u])
12 {
2: 3 dfs visit(u);
}
3: | }
4:572 | '
S:

Adjacency List



Depth-First Search

bool marked[N] {};
bool on stack[N] {};
std: :vector<int> edge to(N,-1);

void dfs visit(unsigned v)

{

marked[v] = true;
on stack[v] = true;
3 for(auto u : arr([v])

| {

) if(!marked[u])

{

3 edge to[u] = v;
I dfs visit(u);
S

P }}

on stack[v] = false;

0:
| ;
2:
3:
4.
5:

Adjacency List



Depth-First Search

void dfs visit(unsigned v) {

Here is the key claim to finding a cycle. marked[v] = true;
on stack[v] = true;
for(auto u : arr[v]) {
Claim: There is a cycle reachable from if (tmarked[u]) {
crr . . edge to[u] = v;
vertex U iff in dfs_visit(v) we find an dfs visit(u):
edge to a vertex which is on_stack. ;

else 1f(on stack[u]){
// found a cycle!
// process the cycle

}
}

on stack[v] = false;

Such an edge is called a back edge.

https://godbolt.org/z/KrxP3Gxd8



Depth-First Search

void dfs visit(unsigned v) {

Here is the key claim to finding a cycle. marked[v] = true;
on stack[v] = true;
for(auto u : arr[v]) {
Claim: There is a cycle reachable from if (tmarked[u]) {
crr . . edge to[u] = v;
vertex U iff in dfs_visit(v) we find an dfs visit(u):
edge to a vertex which is on_stack. ’

else 1f(on stack[u]){
// found a cycle!
// process the cycle

. . }
If v is such a vertex, and we consider )

u from vertex v then the cycle is } on_stack[v] = false;

u < v < edge_to|v| < edge_toledge_to|v|| ¢ - < u



dfs_visit(4)

| 3 on_stack
2
3
|
5

2 |

0:
| ;
2:
3:
4.
5:

Adjacency List

volid dfs visit(unsigned v) {
marked[v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);

}

else 1f(on stack[u]){
// found a cycle!
// process the cycle

}
}

on stack[v] = false;



dfs visit(H)

3 on_stack

|
2
3 455
|
S5

2 |

0:
| ;
2:
3:
4.
5:

Adjacency List

volid dfs visit(unsigned v) {
marked[v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);

}

else 1f(on stack[u]){
// found a cycle!
// process the cycle

}
}

on stack[v] = false;



dfs visit(H)

3 on_stack

|
2
3 455
|
S5

2 |

0:
| ;
2:
3:
4.
5:

Adjacency List

volid dfs visit(unsigned v) {
marked[v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);

}

else 1f(on stack[u]){
// found a cycle!
// process the cycle

}
}

on stack[v] = false;



dfs_visit(4)

3 on_stack

|
2
3 455
|
S5

2 |

0:
| ;
2:
3:
4.
5:

Adjacency List

volid dfs visit(unsigned v) {
marked[v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);

}

else 1f(on stack[u]){
// found a cycle!
// process the cycle

}
}

on stack[v] = false;



dfs_visit(2)

3 on_stack

|
2
3 4552
|
S5

2 |

0:
| ;
2:
3:
4.
5:

Adjacency List

voilid dfs visit(unsigned v) {
marked[v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);

}

else 1f(on stack[u]){
// found a cycle!
// process the cycle

}
}

on stack[v] = false;



dfs visit(3)

3 on_stack

|
2
3 45523
|
S5

2 |

0:
| ;
2:
3:
4.
5:

Adjacency List

voilid dfs visit(unsigned v) {
marked[v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);

}

else 1f(on stack[u]){
// found a cycle!
// process the cycle

}
}

on stack[v] = false;



dfs_visit(1)

voilid dfs visit(unsigned v) {

marked([v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);
}
else 1f(on stack[u]){
0: |3 on_stack // found a cycle!
) // process the cycle
|: 2 }
9.3 4552 31| }
. on stack[v] = false;
3: | $
4:52 | |
K. The edge (1,2) is a back edge. We have found

le!
Adjacency List M A



dfs_visit(4)

voilid dfs visit(unsigned v) {
marked[v] = true;
on stack[v] = true;
for(auto u : arr([v]) {
1f(!marked[u]) {
edge to[u] = v;
dfs visit(u);

}

else 1f(on stack[u]){

3 on_stack // found a cycle!

| // process the cycle
’ (4(5)52(3(1)1)3)2 4 }

|

S

}

on stack[v] = false;

2 |

0:
| ;
2:
3:
4.
5:

Adjacency List



Back Edges and Cycles

Claim:There is a cycle reachable from vertex v iff in dfs_visit(v) we find
an edge to a vertex which is on_stack.

Recall we call an edge from a vertex we are exploring to a vertex already
on the stack a back edge.

Ve have two show two things:

1) If we find a back edge then there is a cycle.

2) If there is a cycle then there is a back edge.



Back Edge = Cycle

Let's say that while exploring vertex %1 we find an edge to vertex u2
which is on the stack.

We arrived at U1 in the call of dfs_visit(us).

dfs_visit(u2) only visits vertices reachable from us2 . @



Back Edge = Cycle

Let's say that while exploring vertex %1 we find an edge to vertex u2
which is on the stack.

We arrived at U1 in the call of dfs_visit(us).

dfs_visit(u2) only visits vertices reachable from us2 .

So U1 is reachable from U2, and this plus the back edge gives a cycle.



Unmarked Path Property
OO — s —@

Unmarked path property: If there is an unmarked path from u; to ug when
dfs_visit(wuy) starts, then we will have the following ordering of start and
finish times:

dfs_visit(ug) dfs_visit(uq)
start finish

—

start finish time
dfs_visit(uy) dfs_visit(ug)



Unmarked Path Property
(D)) e 0 0 —(W)

dfs_visit(ug) dfs_visit(uq)
start finish

—

start finish time
dfs_visit(uy) dfs_visit(ug)

If dfs_visit(ux) starts while dfs_visit(uq) is still active, then
dfs_visit(uxi) must finish before dfs_visit(u;) can finish.



Unmarked Path Property
(D)) e 0 0 —(W)

dfs_visit(ug) dfs_visit(uq)
start finish

—

start finish time
dfs_visit(uy) dfs_visit(ug)

Show by induction that dfs_visit starts on all of u2,...,ur before
dfs_visit(uy) finishes.

We know this is true for U2 because of the edge (uq,us) .



Need Path to be Unmarked
() Juoy—(u2)

This example shows that you need the path to be unmarked for the
unmarked path property to hold.

Suppose you start dfs_visit(ug) and first visit uq .



Need Path to be Unmarked
() Juoy—(u2)

Now when we start dfs_visit(u) there is a path to U2 but there is
not an unmarked path.

And in this case dfs_visit(uy) will finish before dfs_visit(us) begins.



Cycle = Back Edge

@/v

Unmarked path property implies dfs_visit(uyg)
will start before dfs_visit(uy) finishes.

"
(4
@ dfs_visit(ul)

N
ddf s_visit(v)

start

The edge (ug, 1) will be a back edge.



Topological Sort



Topological dSort

Ve want to order the vertices so that u
comes before v in the ordering for every
edge (u,v) in the graph.




DFES Outer Loop

bool marked[N] {};

volid dfs()
{
for(unsigned v = 0; v < N; ++v)
{
1f(!marked[v])
{
dfs visit(v);
}
}

}



DFS Visit

std: :vector<unsigned> preorder {};
std: :vector<unsigned> postorder {};

std::list<unsigned> reverse postorder {};

void dfs visit(unsigned v)

{

marked[v] = true;
on stack[v] = true;
preorder.push back(v);
for(auto u : arr[v])
{

1f(!marked[u])

{

dfs visit(u);

}

}

https://godbolt.org/z/Esa56Y T4E postorder.push back(v);

reverse postorder.push front(v);
on stack[v] = false;



Preorder

std: :vector<unsigned> preorder {};

void dfs visit(unsigned v)

{

marked[v] = true;

on stack[v] = true;
preorder.push back(Vv);
for(auto u : arr[v])

preorder: ordered by when dfs_visit {

1f(!marked[u])
starts on a vertex. (
dfs visit(u);
}
}
postorder.push back(Vv);

reverse postorder.push front(v);
on stack[v] = false;



Postorder

postorder: ordered by when dfs_visit
finishes on a vertex.

std: :vector<unsigned> postorder {};

void dfs visit(unsigned v)
{
marked[v] = true;
on stack[v] = true;
preorder.push back(Vv);
for(auto u : arr[v])
{
1f(!marked[u])
{
dfs visit(u);
}
}

postorder.push back(v);

reverse postorder.push front(v);
on stack[v] = false;



Reverse Postorder

std::list<unsigned> reverse postorder {};

void dfs visit(unsigned v)

{

marked[v] = true;

on stack[v] = true;
preorder.push back(Vv);
for(auto u : arr[v])

reverse postorder:the reverse order of {

. : 1f(!marked[u])
when dfs_visit finishes on a vertex. ;

dfs visit(u);
}
}

postorder.push back(v);

reverse postorder.push front(v);
on stack[v] = false;



Reverse Postorder

Fact: If GG is a DAG, then reverse postorder
is a topological sort of the vertices.

reverse postorder: the reverse order of
when dfs_visit finishes on a vertex.



Depth-First Search

on_stack

-

0:
| ;
2: 3
3: |
4:572 |
5:

Adjacency List



Depth-First Search

g‘”'” o

on_stack

-

0:
| ;
2: 3
3: |
4:572 |
5:

Adjacency List



Depth-First Search

g‘”’” o1

on_stack

-

0:
| ;
2: 3
3: |
4:572 |
5:

Adjacency List



Depth-First Search

g‘”'” Y

on_stack

-

0:
| ;
2: 3
3: |
4:572 |
5:

Adjacency List



Depth-First Search

on_stack

g‘”'” YRR

-

0:
| ;
2: 3
3: |
4:572 |
5:

Adjacency List



Depth-First Search

G @ on_stack
" 011330
A (5
0:13
| :
2:30
3: |
4.5 72 |
5:

Adjacency List



Depth-First Search

G @ on_stack
" 0113302
A (5

0:13

| :

2:30

3: |

4.5 72 |

5:

Adjacency List



Depth-First Search

G @ on_stack

" 01133022
A (5

0:13

| :

2:30

3: |

4.5 72 |

5:

Adjacency List



Depth-First Search

on_stack

NP
" 011330224
A (5

0:1 3

| :

2:30

3: |

4.5 72 |

5:

Adjacency List



Depth-First Search

on_stack

’x‘g'@ Ol I 33022435

-

0:
| ;
2: 3
3: |
4:572 |
5:

Adjacency List



Depth-First Search

on_stack

’x‘g'@ Ol I 330224535

-

0:
| ;
2: 3
3: |
4:572 |
5:

Adjacency List



Final Orderings

on_stack
Ol 1 330224554
O:13
- preorder: 0 | 3245
%? 0 postorder: 1 30254
‘; > 2 | reverse postorder: 4520 3 |

Adjacency List



Topological Sort

on_stack

D (D
v Ol | 3302245054
Ag

reverse postorder: 4520 3 |




Reverse Postorderis a
Topological Sort in a DAG

Fact: If & is a DAG, then reverse postorder is a topological sort of the
vertices.

We need to show that if (%, ?) is an edge in a DAG then dfs_visit(u)
finishes after dfs_visit(v).

This means u comes before v in the reverse postorder and so the
topological sort constraint is satisfied.



Fact: If G is a DAG, then reverse postorder is a topological sort of the
vertices.

We need to show that if (U, v) is an edge in a DAG then dfs_visit(u)
finishes after dfs_visit(v).

Case |: dfs_visit(u) starts before dfs_visit(v) .

v is unmarked when dfs_visit(u) starts.

dfs_visit(v) will be called during dfs_visit(u).

dfs_visit(v) has to terminate before the recursion returns
back to dfs_visit(u).



Fact: If G is a DAG, then reverse postorder is a topological sort of the
vertices.

We need to show that if (U, v) is an edge in a DAG then dfs_visit(u)
finishes after dfs_visit(v).

Case 2: dfs_visit(v) starts before dfs_visit(u).

Case 2a: dfs_visit(v) finishes before dfs_visit(u) starts.



Fact: If G is a DAG, then reverse postorder is a topological sort of the
vertices.

We need to show that if (U, v) is an edge in a DAG then dfs_visit(u)
finishes after dfs_visit(v).

Case 2: dfs_visit(v) starts before dfs_visit(u).
Case 2b: dfs_visit(u) starts before dfs_visit(v) finishes.

Then (u,v) is a back edge, which cannot happen in a DAG.



Summary

Fact:A graph ( has a topological sort iff it is a DAG.

A topological sort of a DAG is given by a reverse postorder of the
vertices from depth-first search.

We can find a topological sort in time O(|V| + |E|) in the adjacency
list model.



Shortest Paths 1n a
DAG




Shortest Paths 1n a DAG

0.5 2.0

Let's say we want to solve the single-source
0.5 shortest path problem in this DAG.

We can allow negative edge weights as we know there will be no
negative-weight cycles as there are no cycles as all.

This is a particularly nice case on which to instantiate the generic shortest
path algorithm.



Shortest Paths 1n a DAG

2.0 Step |: Compute a topological sort of the

0.5 &raph.

This is an ordering of the vertices such that
u < v for every edge (u,v) .




Algorithm

for(auto v : topo order) {
for(const auto& edge : adj list[v]) {
relax(edge);

}
}

We can compute a topological order by depth-first search in time
O(|V]| + |E|) in the adjacency list model.

The overall running time is O(|V| + |E|) in the adjacency list model.



Why 1t Works

If this is a shortest path from 0 to vertex v we know that

OD<u <up <+ - <ur <wv
in the topological order.

By relaxing the outgoing edges of vertices in topological order we relax
€1 before €2 before €3 etc.all the way to €x+1.



Why 1t Works

By relaxing the outgoing edges of vertices in topological order we relax this
path.

Relax a Path Property: If the algorithm relaxes a shortest path from 0 to
then dist_tol|v]| = d(0,v).



