
data structures &
Tutorial 11

algorithms

1

97

2 6 9

5115

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

(Week 12)

Overview

 Burning questions from last week

 This week’s La

 Detecting Cycle

 DAG

 Topological Sort

This week’s Lab

Cycles

Today we are learning about some
more useful types of graphs and
graph algorithms

Detecting Cycle
Topological Sort

 Directed Acyclic Graph (DAG

Detecting Cycles

2

4

3

5

6

1

Here we have a graphdirected

Detecting Cycles

2

4

3

5

6

1

Can anyone see any
in this graph?

cycles

Detecting Cycles

2

4

3

5

6

1

If we start at ,
can we travel along the
edges and get back to
vertex 2?

vertex 2

Detecting Cycles

2

4

3

5

6

1

If we start at ,
can we travel along the
edges and get back to
vertex 2?

vertex 2

Detecting Cycles

2

4

3

5

6

1

If we start at ,
can we travel along the
edges and get back to
vertex 2?

vertex 2

Detecting Cycles

2

4

3

5

6

1

Yes! We have found a cycle

2 4 3

Detecting Cycles

2

4

3

5

6

1

Does 1, 2, 3 form a cycle?

Detecting Cycles

2

4

3

5

6

1

No! because we cannot travel
from 2 1. The edge is
pointing the

-->
wrong way

Detecting Cycles

2

4

3

5

6

1

What about if the edge is
? Is this a

cycle?
bidirectional

Detecting Cycles

2

4

3

5

6

1

Yes! because the edge is
bidirectional so we can
travel from 2 1, which
completes the cycle

-->

Detecting Cycles

2

4

3

5

6

1

Does this process of
following edges deeper and
deeper feel familiar?

What have we seen
the past two weeks that does
this?

algorithm

Detecting Cycles

2

4

3

5

6

1

This is very similar to DFS!

So maybe we can use DFS to
detect a cycle?

Detecting Cycles

2

4

3

5

6

1

Let’s have at look at DFS on
a simple graph

Remember DFS is like
exploring a maze by going
down one corridor until we
can’t go any further and
then turning back

Detecting Cycles

2

4

3

5

6

1

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

[1 2 3 4 5 6]

Detecting Cycles

2

4

3

5

6

1

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5

6

1

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5

6

1

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5

6

1

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5

6

1

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5

6

1

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

[1 2 5 6 5 6, , , , ,]

Detecting Cycles

2

4

3

5

6

1

[1 2 5 6 5 6, , , , ,]

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

Detecting Cycles

2

4

3

5

6

1

[1 2 5 6 5 6, , , , ,]

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

Detecting Cycles

2

4

3

5

6

1

[1 2 5 6 5 6, , , , ,]

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

Detecting Cycles

2

4

3

5

6

1

[1 2 5 6 5 6]

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

Detecting Cycles

2

4

3

5

6

1

[]

We are going to keep track
of the vertices that are
currently part of the

 we are exploring“corridor”

Detecting Cycles

So what would happen if we
encounter a cycle along our
journey?

2

4

3

5

6

1

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 3 4 5 6]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 3 4 5 6, , , , ,]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 5 6 5 6, , , , ,]

Detecting Cycles

2

4

3

5
6

1

So what would happen if we
encounter a cycle along our
journey?

[1 2 5 6 6, , , , ,]

Detecting Cycles

2

4

3

5
6

1

Its only during a that
we reencounter one of the
vertices of a “corridor” that
we are currently exploring

cycle

[1 5 6 6, , , , ,2 2]

Detecting Cycles

2

4

3

5
6

1

So we are going to use a slightly
modified version of DFS to check
our graph for cycles

[1 5 6 6, , , , ,2 2]

Detecting Cycles

2

4

3

5
6

1

So we are going to use a slightly
modified version of DFS to check
our graph for cycles

[1 5 6 6, , , , ,2 2]

Detecting Cycles

class
 visited
 onStack

DirectedCycle

bool Graph
bool int Graph

:

= []

= []

():

(,)

containsCycle graph
dfs start graph

So we are going to create a simple class that is going
to help us find cycles in a graph

Detecting Cycles
class
 visited
 onStack

DirectedCycle

bool Graph
bool int Graph

:

= []

= []

():

(,)

containsCycle graph
dfs start graph

void int Graph v graphdfs (,):
 v visited[] = true
 neighbour graph vfor in . ():getNeighbours
 neighbourif not []:visited

 existsCycle neighbour graph= (,)dfs

Let’s start with a our basic implementation of DFS

Detecting Cycles
class
 visited
 onStack

DirectedCycle

bool Graph
bool int Graph

:

= []

= []

():

(,)

containsCycle graph
dfs start graph

void int Graph v graphdfs (,):
 v onStack[] = true
 v visited[] = true
 neighbour graph vfor in . ():getNeighbours
 neighbourif not []:visited

 existsCycle neighbour graph= (,)dfs

We need to keep track of the current “corridor” we are
exploring. So we use add the onStack vector.

Detecting Cycles
class
 visited
 onStack

DirectedCycle

bool Graph
bool int Graph

:

= []

= []

():

(,)

containsCycle graph
dfs start graph

bool int Graph v graphdfs (,):
 v onStack[] = true
 v visited[] = true
 neighbour graph vfor in . ():getNeighbours
 neighbourif []:onStack

return true
 neighbourif not []:visited

 existsCycle neighbour graph= (,)dfs

Now we also want to check if we reencounter one of the
“corridor’s” vertices. If we do we have found a cycle

Detecting Cycles
class
 visited
 onStack

DirectedCycle

bool Graph
bool int Graph

:

= []

= []

():

(,)

containsCycle graph
dfs start graph

bool int Graph v graphdfs (,):
 v onStack[] = true
 v visited[] = true
 neighbour graph vfor in . ():getNeighbours
 neighbourif []:onStack

return true
 neighbourif not []:visited
 existsCycle neighbour graph= (,)dfs
 existsCycleif :

return true

So we now also need to update the recursive call. This
call will also return true if it finds a cycle

Detecting Cycles
class
 visited
 onStack

DirectedCycle

bool Graph
bool int Graph

:

= []

= []

():

(,)

containsCycle graph
dfs start graph

bool int Graph v graphdfs (,):
 v onStack[] = true
 v visited[] = true
 neighbour graph vfor in . ():getNeighbours
 neighbourif []:onStack

return true
 neighbourif not []:visited
 existsCycle neighbour graph= (,)dfs
 existsCycleif :

return true
onStack[] =v false
return false

Finally we need to handle the case if we don’t find a cycle

Detecting Cycles

So far this code kinda works but we have some problems 
Can anyone see the two problems that we will run into?

2

3

4
5

1 6
11

7

12

10

8
9

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Suppose we start with dfs()1

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

Well... the problem is there are still a lot of
unexplored vertices

2

3

4
5

1 6
11

7

12

10

8
9

Detecting Cycles

Luckily the solution is simple, we just pick another unvisited
vertex, and run the dfs algorithm on that vertex

2

3

4
5

1 6
11

7

12

10

89

Detecting Cycles

2

3

4
5

1 6
11

7

12

10

89

So lets try nextdfs() 5

Detecting Cycles

2

3

4
5

1 6
11

7

12

10

89

So lets try nextdfs() 5

Detecting Cycles

2

3

4
5

1 6
11

7

12

10

89

And then we could do next which will visit all the
vertices in that connected component

dfs() 11

Detecting Cycles

2

3

4
5

1 6
11

7

12

10

89

And then we could do where we will detect a cycledfs() 9

Topological Sort

Prog 1

Prog 2

DSA

Soft Arch
Intro Game Dev

Adv Game Prog

DB Fund

Suppose that you are trying to create a learning plan for your
degree so that you know what order to take your subjects in

Topological Sort
Prog 1

Prog 2

DSA

Soft Arch

Intro Game Dev

Adv Game Prog

DB Fund

You want to find some kind of
 of your subjects so

that you have done all the
prerequisites by the time you
take that class

Notice that all of the edges
point in the same direction.
This is called a topological
sort

ordering

Topological Sort
Prog 1

Prog 2

DSA

Soft Arch

Intro Game Dev

Adv Game Prog

DB Fund

Also notice that we want
cannot create a topological
ordering if there is a cycle
in our graph.

At least one edge will always
point in the

But the good news is, we just
learned how to detect cycles!

wrong direction

Topological Sort
Prog 1

Prog 2

DSA

Soft Arch

Intro Game Dev

Adv Game Prog

DB Fund

Our task is to create an
algorithm that can solve this
problem efficiently for us!

Topological Sort

6

3

4

9

8 111

start end

Postorder

Do you all remember postorder traversal?

left root-> -> right

1 4 3 8 11 9 6, , , , , ,

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 3 1 4 5 6]
Stack

1 4 3 8 11 9 6, , , , , ,
Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 3 1 4 5 6, , , , ,]
Stack

1 4 3 8 11 9 6, , , , , ,
Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 3 1 4 5 6, , , , ,]
Stack

1 4 3 8 11 9 6, , , , , ,
Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 3 1 4 5 6, , , , ,]

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 3 4 4 5 6, , , , ,]

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 3 4 4 5 6, , , , ,]

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 3 4 4 5 6]

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

[6 9 8 4 5 6, , , , ,]

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

[6 9 8 4 5 6, , , , ,]

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

[6 9 8 4 5 6, , , , ,]

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

[6 9 11 4 5 6, , , , ,]

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

[6 9 11 4 5 6, , , , ,]

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

[6 9 11 4 5 6]

Topological Sort

6

3

4

9

8 111

Well here is another way to think of it. If we perform a
DFS, and we write down the vertex only when we remove it

from our stack

1 4 3 8 11 9 6, , , , , ,

Stack

Post order

[]

Topological Sort
Prog 1

Prog 2

DSA

Soft Arch

Intro Game Dev

Adv Game Prog

DB Fund

So let’s try apply a
postorder traversal to our
graph of subjects

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

Stack

Post order

[1 3 6 7]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

Stack

Post order

[1 3 6 7, , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

Stack

Post order

[1 3 6 7, , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

Stack

Post order

[1 3 6 7, , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1

Stack

Post order

[1 3 6 7, , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 3 6 7, , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 3 5 6 7, , , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 3 5 6 7, , , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 3 4 5 6 7, , , , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 3 4 5 6 7, , , , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 3 4 5 6 7]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 2 3 4 5 6 7, , , , , ,]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[1 2 3 4 5 6 7]

Topological Sort
1

3

6

4

5

7

2

So let’s try apply a
postorder traversal to our
graph of subjects

7 6 5 4 3 2 1, , , , , ,

Stack

Post order

[]

Topological Sort
1

3

6

4

5

7

2

So a postorder traversal
gives us a reverse
topological sort.

So all we need to do is
 the resultreverse

1 2 3 4 5 6 7, , , , , ,
Reverse post order

Topological Sort
1

3

6

4

5

7

2

The only problem we have is
we don’t know what the
starting vertex is.

Topological Sort

The only problem we have is
we don’t know what the
starting vertex is.

Thankfully this is really
easy to deal with

Suppose we start at vertex 3

1

3

6

4

5

7

2

Topological Sort

After performing a post order
traversal starting from

we should have the
following

vertex 3

1

2

7 6 5 4 3 2 1, , , , , ,
Post order

3

6

4

5

7

Topological Sort

Now we just pick another
unvisited vertex. Then we
perform another post order
traversal and we just
to the current result

append

1

2

7 6 5 4 3 2 1, , , , , ,
Post order

3

6

4

5

7

Topological Sort

Now we just pick another
unvisited vertex. Then we
perform another post order
traversal and we just
to the current result

append

1

2

7 6 5 4 3 2 1, , , , , ,
Post order

3

6

4

5

7

Topological Sort

Now we just pick another
unvisited vertex. Then we
perform another post order
traversal and we just
to the current result

append

1

2

7 6 5 4 3 2 1, , , , , ,
Post order

3

6

4

5

7

Topological Sort

Now we just pick another
unvisited vertex. Then we
perform another post order
traversal and we just
to the current result

append

1

2

7 6 5 4 3 2 1, , , , , ,
Post order

3

6

4

5

7

Topological Sort

bool int v graph :

 onStack v
 visited v
 neighbour in graph start :

 onStack neighbour :

 visited neighbour :

 existsCycle neighbour graph
 existsCycle:

 onStack v
 order v

dfs
insert
insert

getNeighbours
contains

contains
dfs

erase
push_back

(,)
. ()

. ()

for . ()
if . ()

return true

if not . ()

= (,)

if

return true

. ()

. ()

return false

Graph

we have detected a cycle

bool graph : 
 visited
 vertex in graph: 
 visited v : 

 onStack
 onStack v
 existsCycle v graph
 existsCycle: 
 True 
 order
 False

computeTopoOrder
clear

contains

clear
add

dfs

reverse

()
. () 

for
if not . ()

. () 

. () 
= (,) 

if
return

. () 
return

Graph

clear onStack for each running of dfsVisit 

Student Feedback Survey

https://www.sfs.uts.edu.au/

The SFS is open as of now! You can now write tutor

specific feedback. Please give me some feedback.

It would really mean a lot

