Fibonacci Revisited

Recursive Fibonacci
Algorithm

Recall the Fibonacci sequence 0,1,1,2,3,5,8,13,21,...

Fn{n itn=0orn=1

F,._1+ F,_o otherwise

This mathematical definition led us to a recursive algorithm

Recursive Fibonacci

o n ifn=0orn=1
" F,_1+ F,_o otherwise

inté4 t recursiveFibonacci(int n) {
if (n==09 || n==1) {
return n;

}

return recursiveFibonacci(n-1) + recursiveFibonacci(n-2):

}

Benchmark

Benchmark Time

recursiveFibonacciBench/45 3.47 s
iterativeFibonacciBench/45 9.129 us

fib(5)

fib(4) fib(3)
fib(1) f£ib(2)
fib(2) fib(1) £ib(1) fib(0) fib(1) £ib(0)

fib(1) fib(0)

Number of Leaves

Let C,, be the number of leaves in this computation tree on input n.

This is the number of times we evaluate the base cases fib(0) and fib(1).

In the base cases n =0 and n =1 there is just one leaf so C;,, = 1.

Otherwise, the number of leaves in the tree for fib(n) is the sum of the
number of leaves in the trees for fib(n — 1) and fib(n — 2).

O 1 tn=0orn=1
" C,_1+C,_o otherwise

Number of Leaves

O 1 tn=0orn=1
" C,_1+C,_o otherwise

P n tn=0orn=1
" |\E, {+ F, 5 otherwise

These just differ in the base case: Cy = F,(C = Fs.
So we have C,, = F,,11.

The number of leaves grows like the Fibonacci numbers, which is very fast!
1.61™

F, ~
V5

Improving the Algorithm

If we have already computed something, remember the answer.

Then we don’t have to compute it again.

Remembering the answer is called memoization (like writing a memo).

class Fibonacci {
private:
// memo will store the values we have computed
std::vector<inté4 t> memo {};
inté4 t fibonacciHelper(int n);
public:
Fibonacci();
inté4 t compute(int n);
r;

Improving the Algorithm

inté4 t Fibonacci::fibonacciHelper(int n) {
// 1f memo.at(n) >= © we have already computed fib(n)
1T (memo.at(n) >= 0) {
return memo.at(n);

b
memo.at(n) = fibonacciHelper(n - 1) + fibonacciHelper(n - 2);

return memo.at(n);

}

inté64 t Fibonacci::compute(int n) {
if (n <= 1) {
return n,;

}

// use -1 to indicate we have not yet computed fib(n)

memo.resize(n + 1, -1);
memo.at(0) = 0;

memo.at(1l) = 1;

return fibonacciHelper(n);

}

Improving the Algorithm

1iterativeFibonacciBench/70 D.171 us
memoli1zedFibonacciBench/70 0.508 us

With memoization the running time of the recursive algorithm to compute
the 70th Fibonacci number is now under a microsecond.

Dynamic Programming

This is our first example of dynamic programming:

Like divide and conquer we express the solution to the original
problem in terms of similar subproblemes.

Unlike divide and conquer, a hallmark of dynamic programming is overlap
between subproblems.

With this recursion + memoization approach we avoid duplicating work.

[terative + Topo Sort

There is another way we can view dynamic programming.

Look at the dependency graph of the subproblems.

0] #0007

Do a topological sort of this graph, and solve the subproblems in this order.

Example: Counting
Paths

Counting Paths in Grid

How many paths from the top left corner to the bottom right corner when
from each cell we can move either down or to the right?

Dynamic Programming

Step |: Decide on the subproblems.

Original Problem: number of paths from
(0, 0) to (4, 4).

Dynamic Programming

Step |: Decide on the subproblems.

Original Problem: number of paths from
(0, 0) to (4, 4).

It looks like knowing the number of paths
from (0, 0) to (4, 3) would be useful!

Dynamic Programming

Step |: Decide on the subproblems.

Subproblem: number of paths from
(0, 0) to (x,Y).

Dynamic Programming

Step 2: Develop recurrence relation.

To arrive at (4,4) we have to come from
the north or west.

numPathsTo(4,4) = numPathsTo(3, 4)
numPathsTo(4, 3)

Dynamic Programming

Step 2: Develop recurrence relation.

1 ifrxr=0o0ry=20
numPathsTo(z,y) = { numPathsTo(x — 1,)
+ numPathsTo(x,y — 1) otherwise

Dynamic Programming

Step 3: Option | is to use recursion with memoization

std: :map<std::pair<int, int>, int> numPathsTo {};

// populate memo table with base cases

numPathsTo[{0, 0}] = 1;

for (int 1 = 1; 1 < n; ++1i) {
numPathsTo[{0, 1}] = 1;
numPathsTo[{1, 0}] = 1;

Dynamic Programming

Step 3: Option | is to use recursion with memoization

int countPaths(std::pair<int, int> point) {

// 1if we have already computed result, use it

1f (numPathsTo.contains(point)) {

return numPathsTo[point];

}

// add result to memo table and return it

return numPathsTo[point] = countPaths({point.first - 1, point.second})

+ countPaths({point.first, point.second - 1});

Dynamic Programming

Step 3: Option 2 is the iterative approach with topological ordering.

In what order can we solve the subproblems so that we have already
have the information we need to solve the current subproblem?

Before we solve problem (%, y) we need to have
l—» already solved problems (x-1,y) and (x, y-1).

Dynamic Programming

Step 3: Option 2 is the iterative approach with topological ordering

Usually the order in which to do the subproblems can be easily seen.

In this case we can go row-by-row.

Dynamic Programming

Step 3: Option 2 is iterative approach with topological sort

int iterativeCountPaths(int n) {
std::vector<int> numPathsTo(n * n);
for (int 1 =0; 1 < n; ++1) {
for (int 3 =0; 3 < n; ++j) {
1f (1 == 0 or J == 0) {
numPathsTo.at(i * n + j)
} else {
numPathsTo.at(1i *x n + j)

1;

numPathsTo.at((1 - 1) * n + 7J)
+ numPathsTo.at(1 *x n + 3 - 1)

}

s
return numPathsTo.back():

