
WELCOME TO
🎉 DATA STRUCTURES & ALGORITHMS

🎉

LESSON OVERVIEW
• Meet your tutor and icebreaker

• Course overview

• Lab content

• Input and Output

• Factorial problem

• Pointers and references

• Introduction to GTest

• Classes

TOM GOLDING

• Studying a bachelor of Computing Science with a
major in Enterprise Systems Development

• Aspiring software engineer

• Loves to play the guitar

Contact: Thomas.golding@uts.edu.au

COURSE OVERVIEW

• The C++ language
• Pointers and references
• Big O notation
• Complexity theory
• Basic data structures and algorithms for them:

• Lists
• Arrays

• Sorting algorithms
• Advanced data structures and algorithms for them:

• Binary tree data structure
• Hashing, sets and maps
• Graph data structure

COURSE OVERVIEW

• Programming assignment 1 (12/04/2024) 20%

• Programming assignment 2 (24/05/2024) 30%

• Weekly exercises (week 2 – week 12) 20%

• Final exam (Exam period) 30%

ASSESSMENTS

LAB TIME!!!

std::cout
• You can access cout with #include <iostream>

• std is a namespace which stands for “standard library”

• cout stands for “character output”

• Similar to Java’s System.out.println(), it allows you to print
to the console

Input and
output

std::cout << ”Hello World”;

• The << symbol is the insertion operator

• Sending data from the right side to the left into
the character output

Input and
output

• endl stands for “end line”

• Both \n and std::endl do the same thing

• Except, std::endl flushes the buffer, whilst
\n doesn’t

std::cout << ”Hello World\n”;

std::cout << ”Hello World” << std::endl;

Input and
output

std::cin
• std is a namespace that stands for “standard library”

• cin stands for “character input”

• Similar to Java’s Scanner object, it allows you to write to
the console

Input and
output

std::cin >> username;
• The >> symbol is the extraction operator

• Sending our inputted data from cin to our variable
username to be stored

std::string userName {};

Input and
output

Now time to try out the input/output
exercises

Feel free to give me a holler if you need to ask some questions 😎

Factorials

• A factorial is the multiplication of every number
from 1 to n

n!

Factorials

• A factorial is the multiplication of every number
from 1 to n

5! = 5 x 4 x 3 x 2 x 1 = 120

Factorials

• A factorial is the multiplication of every number
from 1 to n

• Except in the case of 0!, but why?

0! = 1

Factorials

• Well we can simplify this problem into

5! = 5 x 4 x 3 x 2 x 1 = 120

Factorials

• Well we can simplify this problem into

• And further into

5! = 5 x 4 x 3 x 2 x 1 = 120

5! = 5 x 4!

Factorials

• Well we can simplify this problem into

• And further into

5! = 5 x 4 x 3 x 2 x 1 = 120

5! = 5 x 4!

Factorials

• Well we can simplify this problem into

• And further into

• Therefore, if we had

5! = 5 x 4 x 3 x 2 x 1 = 120

5! = 5 x 4!

Factorials

• Well we can simplify this problem into

• And further into

• Therefore, if we had

1! = 1

Factorials

• Well we can simplify this problem into

• And further into

• Therefore, if we had

1! = 1

1! = 1 x 0!

Factorials

• Well we can simplify this problem into

• And further into

• Therefore, if we had

1! = 1

1! = 1 x 0!

Now time to try out the factorial exercise

Feel free to give me a holler if you need to ask some questions 😎

Variables

• A variable is a named storage in
computer memory that holds a value

Variables

• A variable is a named storage in
computer memory that holds a value

• Variables are stored in a contiguous
line of boxes in the RAM

Variables

• A variable is a named storage in
computer memory that holds a value

• Variables are stored in a contiguous
line of boxes in the RAM

• Each box is associated with a unique
hexadecimal address

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

Declaring variables

• When you declare a variable, it is randomly
assigned a free box

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age;

Declaring variables

• When you declare a variable, it is randomly
assigned a free box. So now age has the
address 0x02.

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age;
age

Declaring variables

• When you declare a variable, it is randomly
assigned a free box. So now age has the
address 0x02.

• When you assign a value to age, the
memory occupying that space will contain
that data

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age;
age

int age {24};

Declaring variables

• When you declare a variable, it is randomly
assigned a free box. So now age has the
address 0x02.

• When you assign a value to age, the
memory occupying that space will contain
that data

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age;
age

int age {24};

24

References

• In C++, you can create a reference to
another variable using the &.

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
age 24

References

• In C++, you can create a reference to
another variable using the &.

• Here, ageRef creates a reference to age
and they both share the same memory
address

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
ageRef, age 24

int & ageRef {age};

References
0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
25

int & ageRef {age};

age = 25;

ageRef, age

References
0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
26

int & ageRef {age};

age = 25;

ageRef = 26;

ageRef, age

Address-of-operator

• The & can also be used to get the memory
address of a variable, called either a
reference declaration or an
address-of-operator depending on the
context

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
age 24

&age; // returns 0x02

Pointers

• In C++, you can create a pointer to another
variable’s memory address using *

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
age 24

Pointers

• In C++, you can create a pointer to another
variable’s memory address using *

• Different to a reference, a pointer is stored
in a separate free memory address

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
age 24

int *agePtr; agePtr

Pointers

• In C++, you can create a pointer to another
variable’s memory address using *

• Different to a reference, a pointer is stored
in a separate free memory address

• We can then use this pointer to set the value
to the memory address of age

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
age 24

int *agePtr {&age}; agePtr 0x02

Pointer dereferencing

• The * is also called the “dereference
operator”, which will dereference the
pointer and access the value it is pointing to

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
age 24

int *agePtr {&age}; agePtr 0x02

agePtr; // returns 0x02

Pointer dereferencing

• The * is also called the “dereference
operator”, which will dereference the
pointer and access the value it is pointing to

0x01

0x03

0x02

0x04

0x05

0x06

0x07

0x08

int age {24};
age 24

int *agePtr {&age}; agePtr 0x02

agePtr; // returns 0x02

*agePtr; // returns 24

Pass by value

• When your function is passed by value, you are creating a copy of the original
value

• Any alterations you make to the value within the scope of the function, will not
change the original value

• Both the original and the copy are two separate values, with two separate
memory addresses

void passByValue(int a) {
a = a * 2

};

Pass by reference

void passByReference(int &a) {
a = a * 2

};

• When your function is passed by reference, the function will receive a
reference to the memory address of the original value

• Meaning that any alterations you make to the value within the scope of the
function will change the original value

Pass by pointer

void passByPointer(int *a) {
*a = (*a) * 2

};

• Similar to a pass by reference, except instead of accepting a reference in its
parameters, it will receive a pointer

• Any alterations you make to the value within the scope of the function will change the
original value

• As you can see, to alter the value the pointer is pointing to, you have to dereference
the pointer, resulting in more code in comparison to pass by reference

Pass by const reference

void passByConstPointer(const int &a) {
a = a * 2 // throws compilation error

};

• Similar to a pass by reference, except instead of accepting a reference in its
parameters, it will receive a const reference

• const stands for “constant”, meaning that the value is a read-only value and
cannot be altered

• Trying to alter a const value will result in a compilation error

Resources

• cppreference.com is a great tool to learn specific aspects of the C++ language

• https://en.cppreference.com/w/

• LearnCPP.com is a great tool to learn C++ chapter by chapter, covering the basics such
as variables and functions, to advanced topics like structs, classes, and operator
overloading

• https://en.cppreference.com/w/

• Leetcode.com is a great tool for learning algorithms using data structures you will
learn throughout DSA, it will also help you refine on your C++

• https://leetcode.com/

• WilliamFiset on Youtube has a large assortment of videos on understanding
data structures and algorithms

• https://www.youtube.com/@WilliamFiset-videos

https://en.cppreference.com/w/
https://en.cppreference.com/w/
https://leetcode.com/
https://www.youtube.com/@WilliamFiset-videos

Access to the google drive

• I will upload slides to the Google Drive after
every class

• https://drive.google.com/drive/folders/1H5psebndM_

YVyoJE-BJ_ODNJOfgq9-uI

https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI
https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI

