
Data Structures and Algorithms
Welcome to

31251

Topics for Today

● Meet your tutor
● Programming at UTS
● What to expect from this subject
● Why C++
● Pointers and references
● Pass by methods
● This week’s lab

John Collins
● Computer Science (Honours) Graduate
● Gameplay Engineer

○ New, soon to be announced studio
○ Working in Unreal 5 with C++/BP

● Honours Thesis programmed on shadow
rendering, programmed in C++/OpenGL

Contact:
john.collins@uts.edu.au
(Do not use my student email)
On the Ed discussion board
(this is a part of the tutors’ jobs)

Tutorial Style:
Start tutorials with a brief slideshow, covering the ideas
necessary for the lab, and useful C++ concepts.
Describe and discuss each lab problem.
Assign a small part of the problem and time to solve it,
before giving its solution, and moving to next sub-problem.

mailto:john.collins@uts.edu.au

Programming at UTS

Programming 1 Programming
Fundamentals

Programming 2 Applications
Programming

Data Structures
and Algorithms

Discrete
Mathematics

Theory of
Computational

Science

Advanced
Algorithms

Advanced Games
Programming

Programming
on the internet

iOS/
Android

Programming

.NET
Programming

Database
Fundamentals

What else?

Fundamentals
Of C

Programming

Software
Development

Studio

What to expect from DSA

● We are going to go through A LOT
● The C++ language
● Pointers and references
● Big O notation, time and space

complexity theory
● Basic list/array like data structures
● Stacks, Queues
● Sorting algorithms (many)
● Algorithm design paradigms

● Binary tree data structure
● Tree traversal algorithms
● Hashing, sets and maps
● Graph data structures
● Graph traversal algorithms (many)

This class gets you ready for typical
programming job interview questions.

What to expect from DSA

Assessments:

● Programming Assignment 1 - 20%
● Programming Assignment 2 - 30%
● Weekly Exercises (10 in total) - 20%
● Exam - 30%

C++

● It remains in use because it is so fast.
● Powerful mix of low and high level programming

○ Low level memory management
○ High level object oriented programming
○ Very specific and precise language

● A historically and conceptually important language.
● Has a much higher skill floor than other languages and some quirks to its

design. This is why Java/C# were invented.
● May be hard to get used to if you’ve primarily used Python, JavaScript.

Hexadecimal:
0x686bf5402b9e

The 0x prefix indicates that the value is a hexadecimal
number. 0x is not a part of the number, it just means its in hex.
An alternative way of writing a number.
In decimal notation each digit represents values [0,9],
in hexadecimal, they represent [0,15], A=10, B=11, C=12, D=13,
E=14, F=15.
A useful representation, because it maps naturally to binary,
15 in binary is 1111, so a hex digit encapsulates 4 bits.
Two hex digits represents a byte.

Other forms of this number:
Decimal: 114812885412766
Binary:
11010000110101111110101010000000010101110011110
In the style of an IP: 104.107.64.43.158
Also commonly used to refer to 16 bit colours.

1 1 1 1
=

15
=
F

Binary

Decimal

Hex

Computer architecture

● RAM - “Memory”
● HDD/SSD - “Storage”
● CPU/GPU - “Processor”

Memory is partitioned into 1-byte (8-bit) segments,
which by convention are identified by a hexadecimal number.

This is what a pointer holds, the name (address) of a particular place in memory.

The smallest amount we can use is a char or a bool which are both 1 byte.
You can use sizeof(char) and it will return 1, try other type specifiers and see
how many bytes they are.

Pointers and References
As initialisers
int* x “Pointer”
Initialises a variable containing a
memory address.
Contains:
0x00000000

As operators

int& x “Reference”
Initialises an alias for an existing
variable. They both refer to the
same memory address to
read/write their data.
Contains: data

&x “Address of”
Get the address of this
variable.
Returns:
0x00000000

*x “Dereference”
Gets the data stored in that
memory address.
Used on pointers.
Returns: data

As function parameters
Function parameters use the initialiser rules from the previous table.

int myFunc(int& x){}

int myFunc(const int& x){}

int myFunc(int x){}

int myFunc(int* x){}

As function parameters
Function parameters use the initialiser rules from the previous table.

int myFunc(int& x){}
Gives you the original, editable
variable in the function body.

int myFunc(const int& x){}
Same as above, but will not compile if
you make any changes to x.

int myFunc(int x){}
Gives you a copy of x to use within the
function body. Changes to x within the
function do not affect the original variable.

int myFunc(int* x){}
Gives you a pointer, this is useful for
objects that we store on the heap (talk
about this later).

This Week’s Lab
C in and C out:
C++ has a somewhat unusual way of dealing with printing and live user
inputs.
We use the << (stream insertion) and >> (stream extraction) operators.
C++ considers the output log and user input as streams, which are like
sources of data of unknown size. So rather than loading them all into
memory at once, because we don’t know what size that would be, we do
it bit by bit.

To print we use
#include <iostream>
std::cout << “hello world”;
To push this to the stream.
We also like to add a new line “\n”

To print we use
#include <iostream>
std::string userInput {};
std::cin >> userInput;
To read this from the stream

Writing Functions
We often want to reuse functionality in our programs, for this we
encapsulate them into functions.

For this exercise we want you to write a simple function to add two
integers together and return the result.

In C++ we define a function by writing its return type, then name, then
parameters, and a function scope { } and unless its void a return
statement.

I’ll give you a couple of minutes to try this.

Writing Functions
We often want to reuse functionality in our programs, for this we
encapsulate them into functions.

For this exercise we want you to write a simple function to add two
integers together and return the result.

In C++ we define a function by writing its return type, then name, then
parameters, and a function scope { } and unless its void a return
statement.

int add(int a, int b) {
 return a + b;
}

return type function name(parameter 1
type parameter1 name, …) {

return statement return value ;
}

Factorial
Factorial (!) is a mathematical operator that returns the product of all
integers between the supplied number and one.
Remember: When we add things this is called a sum,
When we multiply things this is called a product.

So for example:
3! = 3 * 2 * 1 = 6
4! = 4 * 3 * 2 * 1 = 24
This operator creates large values very very quickly.
Also note 0! = 1

Write your solution in factorial.cpp (NOT factorial.h or main.cpp),
make a function that returns the factorial of the given number.

Different Parameter Modes
In this exercise we give you examples of different functions, where you
would want to use the different kinds of parameters passing modes, like
we spoke about earlier.

When completing this task, the point is to change the definitions of the
functions to use the most suitable parameters. They are all pass-by-value
in the template, change them to the correct mode.

As function parameters
Function parameters use the initialiser rules from the previous table.

int myFunc(int& x){}
Gives you the original, editable
variable in the function body.

int myFunc(const int& x){}
Same as above, but will not compile if
you make any changes.

int myFunc(int x){}
Gives you a copy of x to use within the
function body. Changes to x within the
function do not affect the original variable.

int myFunc(int* x){}
Gives you a pointer, this is useful for
objects that we store on the heap (talk
about this later).

