Abstract Data lype

Example

Leetcode 217 (easy, Blind/5): Contains duplicate
Given an array of " numbers, determine if any value appears at least twice.

How can we solve this problem!?

Values + Operations

Say the values in the array are Qg,Q1,...,0n_1.

Natural idea: iterate over the array and for each value check if we have
seen it before.

Basic task: Given G4, is it equal to any of agp,...,a;—_1,the values we
have already seen!?

Double For Loop
We could accomplish this with a double for loop:

bool containsDuplicate(const std::vector<int>& arr) {
for(int 1 = 0; 1 < arr.size(); ++1i) {
for(int j = 0; j < i; ++3) {
if(arr[1i] == arr[]]) {

return true;

}
}

return false;l

https://godbolt.org/z/fvo5GjE%e
Is there a better way!?

Data Structure

Given @4, is it equal to any of aqg,...,a;_1,the values we

Basic task:
have already seen!

In the double for loop solution, we leave the data in its original form.
To check if we have seen a value we then iterate through all the seen values.

Is there some other we can organize the values we have already seen so
far to speed up this check!?

In other words, can we put the values seen in a data structure to make
lookup faster?

Contains and Insert

Let's be more formal about the operations we want to perform on our
data structure.

* We want to check if it contains a given element.
* We want to insert elements we have seen into the data structure.

for(auto val : arr) {
if(valuesSeen.contains(val)) {
return true;
}
valuesSeen.insert(val);

}

return false;

Contains and Insert

for(auto val : arr) {
1f(valuesSeen.contains(val)) {
return true;

}

valuesSeen.insert(val);

}

return false;

This is a generic template to solve Contains Duplicate that we
can instantiate in different ways.

The double for loop is also an instantiation of this template.

Abstract Data Type

We have now given an Abstract Data Type (ADT) that will solve the problem.

An ADT is a collection of values and a specification of operations that can
be performed on them.

For the Contains Duplicate problem we want an abstract data type with the
operations contains and insert.

ADT vs. Data Structure

An ADT is like a user's manual. It specifies what a user can do, but says
nothing about how the operations are implemented.

A data structure is a concrete implementation of an ADT.

To instantiate our algorithm for Contains Duplicate, problem we have to
choose a data structure to implement the ADT we need.

The efficiency of our solution depends on the data structure we choose.

Problem Solving

| find it is often useful to design algorithms using abstract data types.

As you are thinking about a problem imagine what "special powers" would
allow you to solve it.

These special powers form the operations of an abstract data type.

Then you can see if there is a data structure that can efficiently
implement this abstract data type.

Library of ADTs

Throughout this course you will see the most important abstract data types
and how to implement them to develop your own library of ADTs.

This will help you design algorithms by knowing what "special powers”
are possible.

In particular, you will learn about data structures like balanced binary
search trees and hash tables that are good for the Contains
Duplicate problem.

Contains Duplicate

B benchmarkSet benchmarkUnorderedSet benchmarkDoubleFor
2500000000
2000000000
1500000000
1000000000
500000000
0 W
0 10000 20000 30000 40000 50000 60000 70000

ratio (CPU time / Noop time)
Lower is faster

https://quick-bench.com/q/dNOVNDYPG6xMIAS77rkW8e-TppTA

Fixed Size Array

Fixed-Size Array ADT

In a fixed-size array, we must specify the maximum number of items it
can hold on initialization.

A < Array(n) creates an empty array that can hold 12 elements.

We can perform two operations on a fixed size array:

th

A.get(i) for 0 < 12 < n returns the 7" item in the array.

A.set(i,x) for 0 <17 < n setthe value of the ;" item to be .

Model of Computation

In this course, we want to talk about the complexity of algorithms and data
structures.

th

How much time does it take to get the """ item of an array!?

In order to do this, we have to say something about the model of
computation we are using.

Model of Computation
AEEEEEEEEEEEEEEEEEES

o 1 2 - - 17 18 19

Imagine all the memory of your computer as a long tape divided into
small chunks of memory (think 8 bits) called words.

Each word has an integer address.

Model of Computation
AEEEEEEEEEEEEEEEEEES

o 1 2 - - 17 18 19

|) Random Access: we can read/write to any address in constant time.
2) We can allocate or free a block of memory in constant time.

3) We can perform arithmetic operations (plus, minus, times, divide) on
addresses in constant time.

Model of Computation
EEEEEEEET ST

o 1 2 - I'm using this memory! - 17 1819

|) Random Access: we can read/write to any address in constant time.
2) We can allocate or free a block of memory in constant time.

3) We can perform arithmetic operations (plus, minus, times, divide) on
addresses in constant time.

Implementation of a
fixed-size array

! 1 1

location location location
53 57 64
A < Array(n) creates an empty array that can hold " elements.

We allocate a contiguous block of memory large enough to hold 1 items.

This takes constant time by rule 2.

Implementation of a

fixed-size array

518 0(11{22/1]6|9[10[15| 1|7
! ! 1

location location location
53 57 64

We store the address of the first element of the array &arr|0].

From the address of the first element we can compute the address of
arr|i| with one addition and one multiplication.

&arr|0] + i * sizeof(type)

We can get/set arr|i] in constant time in the RAM model.

sSummary

A fixed-size array supports the following operations.

A < Array(n) creates an empty array that can hold 12 elements.

A.Get(1) for 0 < i < n returns the ' item in the array.

A.Set(i,x) for 0 <i < n set the value of the i""* item to be = .

All of these operations take constant time.

Resizable Array

Resizable Array

What is the drawback of a fixed-size array!?

You have to know an upper bound on the number of elements in advance.

If we are reading in data from a file, for example, we may not know this.

A resizable array allows us to add as many elements as we want, up to the
memory limit of the computer.

As in a fixed-size array, in a resizable array we can access/modify any
element via its index in constant time.

Resizable Array ADT

A < Vector() Creates an empty resizable array

A.push back(x) Add z to the end of A.

A.pop_back() Remove the last element of A.
A.size() Return the number of elements in A .
A.get (i) For 0 < i < A.size(), returns the ' itemin A .

For 0 <1 < A,size(), set the value of the 7"

A.set (i, x) item to be I .

Implementing a Resizable Array

We implement a resizable array using fixed-size arrays.

Basic idea: Allocate a fixed-size array initially. As elements are inserted,
fill from left to right.

o 8|0 1122

excess capacity

Here A.size() is 5. The remaining slots are yet to be used.

Implementing a Resizable Array

Basic idea: Allocate a fixed-size array initially. As elements are inserted,
fill from left to right.

O (8]0 |11]22
! !
begin end

We store the address of the beginning of the array and one past the last
element.

This tells us where to push back a new element, and makes it easy to
compute the size.

Implementing a Resizable Array

Basic idea: Allocate a fixed-size array initially. As elements are inserted,
fill from left to right. end

}
51810 [11]22

While there is excess capacity, adding an element takes constant time.

No Capacity

The interesting question is how to do push back when there is no
excess capacity.

O 8101122/ 1|69 10|15 1|7

Say now we want to push_back 13 but the fixed-size array is full.

What can we do in this situation?

No Capacity

O (8101122169 10|15] 1|7

Say now we want to insert 13 but the fixed-size array is full.

We allocate a new and larger fixed-size array (constant time by Rule 2).

HENEEEEEEEEEEEEEEN

O

3

0

11

22

No Capacity

0

1

11

6

22

9

1

10

6

15

9

1

10

[

15

13

(

Then we copy all the elements, and the new element 13, into the new array.

Finally, we free the memory of the original array (constant time by Rule 2).

Complexity

Question: How much time does this method take to insert an element
when there is no capacity?

It takes constant time to allocate the new array and free the old array.

The expensive part of the operation is to copy the elements from the old
array to the new array.

This operation takes time proportional to the number of elements in
the old array.

Complexity

Question: How should we choose the size of the new array?

There is a trade-off here between time and memory.

Transferring to a new array is a time-expensive operation.
We do not want to do it too often.

This suggest choosing the new array to be large.

On the other hand, the larger the new array, the more potentially
"wasted" extra memory we use.

Array Doubling

A common solution to this trade-off is to set the size of the new
array to be double the size of the previous one.

Memory: this way the amount of memory we use is at most twice the
minimum amount needed.

Time:let's look at how much total time we use over a sequence of
Insertions.

As a proxy for time, let's count the number of "copy” operations as we
successively push back 5,8,0, | |, 22.

We assume that the initially allocated fixed size array has size one.

D initial fixed-size array.

As a proxy for time, let's count the number of "copy” operations as we
successively push back 5,8,0, | |, 22.

We assume that the initially allocated fixed size array has size one.

D initial fixed-size array.

push back 5: excess capacity, no copies.

O copies

As a proxy for time, let's count the number of "copy” operations as we
successively push back 5,8,0, | |, 22.

We assume that the initially allocated fixed size array has size one.

D initial fixed-size array.

push back 5: excess capacity, no copies.
O copies

push back 8: :I no capacity, allocate array of size 2.
| copy

copy 5 over, insert 8.

push back 8:

| copy

push back 8:

| copy

push back O: :I no capacity, allocate array of size 2.

2 copies

0|80 copy over 5 and 8, insert 0.

push back 8:

| copy

push back O:

2 copies

push back | I:

O copies

O Ot
Q0 Q0
-

o (8]0 11

no capacity, allocate array of size 2.

copy over 5 and 8, insert O.

excess capacity, ho copies.

push back | 1: o |8 |01l excess capacity, no copies.

0 copies

push back | I:

0 copies

4 copies

O

11

11

22

excess capacity, ho copies.

no capacity, allocate
array of size 8.

copy 5,8,0, | | and
insert 22.

General Pattern

We have no excess capacity when inserting element 2° + 1, for

1 =0,1,2,3.
For this insertion, we have to do 2° copy operations.

All other insertions do not require any copies and work in constant time.

Thus to insert 2% + 1 elements the total number of copy operations is

k
Z ot — gkt _ 1
1=0

General Pattern

Thus to push back 2% + 1 elements the total number of copy operations is

k
» o 2r=2M1
1=0

This shows that the time to push back 1 elements is at most a constant
times 7.

In the "array doubling” solution, push back takes amortized constant time.

Amortized means averaged over a sequence of operations.

std::vector

Capacity

checks whether the container is empty
(public member function)

std::vector ADT from e metecte |||

returns the maximum possible number of elements

empty

en.CPPrefe rence.COm max_size (public member function)
reserve reserves storage
(public member function)
capacity returns the number of elements that can be held in currently allocated storage

(public member function)

reduces memory usage by freeing unused memory

shrink_to_fit(C++11) (public member function)

Modifiers
claar clears the contenFS
(public member function)
insert inserts elements

(public member function)

constructs element in-place
(public member function)

erases elements
(public member function)

adds an element to the end
(public member function)

constructs an element in-place at the end
(public member function)

removes the last element
(public member function)

emplace (C++11)
erase

push back
emplace_ back (C++11)

pop_back

-~

std::vector<T,AIIocator>::pUSh_baCk
description Of PUSh void push_back(const T& value);) (until C++20)

constexpr void push back(const T& value); (since C++20)

_ (since C++11)

baCI(fI’Om void push_back(T&& value); (2) (until C++20)
constexpr void push back(T&& value); (since C++20)

en.cppreference.com

Appends the given element value to the end of the container.

1) The new element is initialized as a copy of value.
2) value is moved into the new element.

If the new size() is greater than capacity() then all iterators and references (including the past-the-end iterator) are
invalidated. Otherwise only the past-the-end iterator is invalidated.

Parameters

value - the value of the element to append

Type requirements

- T must meet the requirements of Copylnsertable in order to use overload (1).
- T must meet the requirements of Movelnsertable in order to use overload (2).

Return value

(none)

Complexity

Amortized constant.

Notes

It is possible to implement a dynamic array with every insertion taking
worst-case constant time.

See the paper "Resizable Arrays in Optimal Time and Space” by Brodnik,
Carlsson, Demaine, Munro, and Sedgewick.

https://cs.uwaterloo.ca/~imunro/cs840/ResizableArrays.pdf

Linked List

Linked List

A linked list is another sequence container.

It is fast to insert/remove elements from both the front and the back of
the list.

What we give up in a linked list is fast access to the it element. To get

to the 7!"* element we have to iterate from the beginning (or end).

Linked List

A linked list is another sequence container.

It is fast to insert/remove elements from both the front and the back of
the list.

What we give up in a linked list is fast access to the it element. To get

to the 7!"* element we have to iterate from the beginning (or end).

Subtle one: It is fast to insert/remove elements to the middle of the linked
list...

Linked List

A linked list is another sequence container.

It is fast to insert/remove elements from both the front and the back of
the list.

What we give up in a linked list is fast access to the it element. To get

to the 7!"* element we have to iterate from the beginning (or end).

Subtle one: It is fast to insert/remove elements to the middle of the linked
list... given some extra information.

Comparison with Array

In the implementation of a resizable array, values were stored contiguously
In memory.

In a linked list, values can be spread out in memory.

Node

A linked list is comprised of nodes.
Each data value is stored in a separate node.
A node also stores the location in memory of the next node.

Thus a node has at least two fields:

— T~

value address of next node

Memory Picture

51810111 array version
0 (17 O |12 S | 9 111 ¢
| 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 17 18 19 20

Example node: 5|12

The first field holds the value, the second field holds the address
of the next node (holding value 8).

Last node:

11

End of the List

12

8

O

9

3

10

0

11

3

|2

2

|3

14

|5

array version

11

16 |7

)

|18

The second word of the last node indicates that it is the last node by
holding an invalid address (denoted ()), a null pointer.

|19

20

Head of the list

head 51810111 array version
0 (17 D |12 |9 11 @
| 2 3 4 5 6 7 8 9 10 Il 12 13 14 I5 16 17 18 19 20

We also need to know where the list starts, the address of the first node.

We have a variable head with the address of the first node.

head = 5

Alternative picture

head

l
E—* 11| () linked list

next
value null

pointer pointer

Usually we draw a linked list like this, drawing an arrow to the next node
rather than writing the address.

This makes the sequence of values clear.

Implementation

Let's be more concrete about the implementation of a linked list in C++.

struct Node {
int val = 0;

Node* next = nullptr;

}i

https://godbolt.org/z/Pbb5hYnc3

The godbolt link has all the code for a singly linked list we discuss.

Create some nodes

Node first {1}:; struct Node {
Node second {2}; int val = 0:
Node third {3}; Node* next = nullptr;
Node fourth {4}; } 3
1|0 2 | 310 410

We are using aggregate initialization here, see
https://www.learncpp.com/cpp-tutorial/struct-aggregate-initialization/

Aggregate Initialization

Node first {1}; struct Node {

Node second {Z2}; int val = 0:

Node third {3}; Node* next = nullptr;
Node fourth {4}; } s

In aggregate initialization, variables are initialized according to the order
in which they are declared in the struct.

If we were to declare a new variable in Node before val, this would mess up
our code!

Aggregate Initialization

struct Node {

Node first {1}; Node* prev

Node second {Z2};
Node third {3};
Node fourth {4}:;

nullptr;

int val = 0;

r
Node* next = nullptr;

}i

If later | changed my code to have a pointer to a Node declared first, it would
no longer compile.

error: invalid conversion from 'int' to 'Nodex'

Now the compiler is trying to convert | into a Node™ and can't do it.

C++ 20

Node first {.val {1}}; 'struct Node {

Node second {.val {2}}; int val = 0;
Node third {.val {3}}: . Node* next = nullptr;
Node fourth {.val {4}}; } 3

https://godbolt.org/z/Pf3sYan5a

C++20 added a nice feature to avoid this problem. We can specify which
variable the value in the initialization list applies to.

WVe still have to respect the declaration order, but now variables in between
can be dropped.

Linking Nodes

struct Node {

first.next = &second: ,
int val = 0;

second.next = &third:

, Node* next = nullptr:
third.next = &fourth: B

'};

We set first.next to be equal to the address of the second node, and
similarly for the second and third nodes.

We don't need to update fourth.next asitis already nullptr.

[terating through a list

There is a standard idiom for iterating through a list:

for(Node* current = head; current != nullptr; current = current->next) {
std: :cout << current->val << ' ':
heasd— 1 | — 2| ——— 3| —— 4 | ()

current — next is syntactic sugar for (*current).next .

push_iront

head— 1| ———» 2| —» 3| —— 4
o/

Create a new node whose next pointer points to the first node.

Node zero {0, head};

push_iront

head— | | — 2| —— 3| —
o/

Now update the head pointer to point to the zero node.

head = &zero:

This whole process takes constant time.

push_iront

head 1| —— 2| — 3| —
o/

Now update the head pointer to point to the zero node.

head = &zero:

This whole process takes constant time.

push_iront

head 1| — 2| —— 3| ——
!
o/

Now update the head pointer to point to the zero node.

head = &zero:

This whole process takes constant time.

push_ back

head— 1| —— 2| —— 3| —— 4|

Say we want to add a node with 5 to the end of this list.
How much time would this take?
The main problem is that we do not know the address of the last node.

In order to find this address we have to walk through the whole list,
making this a slow operation.

push_back

l

l| —— 2| —— 3| —— 4|0

We can easily fix this by adding a pointer tail to the last node of the list.

Then push_back can be implemented in constant time.

Node fifth {5};
tail->next = &fifth;
tail = &fifth:

push_back

l

l| —— 2| —— 3| —— 4|0 5 | ()

We can easily fix this by adding a pointer tail to the last node of the list.

Then push_back can be implemented in constant time.

Node fifth {5};
tail->next = &fifth;
tail = &fifth:

push_back

l

l — 2|——— 3| —8— 4| — 5|

We can easily fix this by adding a pointer tail to the last node of the list.

Then push_back can be implemented in constant time.

Node fifth {5};
tail->next = &fifth;
tail = &fifth:

push_back .

l

l — 2|——— 3| —8— 4| — 5|

We can easily fix this by adding a pointer tail to the last node of the list.

Then push_back can be implemented in constant time.

Node fifth {5};
tail->next = &fifth;
tail = &fifth:

insert 1n the middle

ptrTo2
l| —— 2| —— 3| — 4 ()

Say we want to insert a node with value -1 in between the second and
third nodes.

This is easy to do given the address of the second node.

insert 1n the middle

ptrTo2
—_— 2 —s 3| — 4

L/

Node* ptrToZ = &second;
Node twoAndAHalf {-1, ptrTo2->next};
ptrTo2->next = &twoAndAHalf;

insert 1n the middle

ptrTo2

l

If — 2 3| — 4

\1 b

Node* ptrTo2 = &second;
Node twoAndAHalf {-1, ptrTo2->next};
ptrTo2->next = &twoAndAHalf;

Given ptrToZ2, this is constant time.

insert betfore

ptrTo3
lf — 2| —— 3| — 4 ()

What if we want to insert a node between 2 and 3 and we are given a
pointer to the third node!

Now we are stuck! We have no way to find the address of the node
before 3, other than iterating through the list.

Doubly Linked List

head tall
' !
D11 < |2 - |3 - | 4

We can solve this by using a doubly linked list.

Each node has a pointer to the next node and the previous node.

Doubly Linked List

head
'

(/I O R

The struct for a node now looks like this:

struct Node {
int val = 0;

}i

Node*
Node*

next
prev

tail

'

— | 3 — (410

nullptr;
nullptr;

https://godbolt.org/z/h5T353cxs

Doubly Linked List

head tail
: }
D11 | 12| < 13| 14190

Now we can iterate backwards through the list:

for(Node* current = tail; current != nullptr; current current->prev) {

std::cout << current->val << ' ':

insert before a node

head tail
' }
D11 | 12| < 13| 14190

™~

ptrTo3

Given a pointer to the node with value 3, we can insert a node with
value -1 before it.

Node twoAndAHalf {-1, ptrTo3, ptrTo3->prev};

insert before a node

head
'
D11 < |2 '

I

= |3
I I

ptrTo3

tail

|

—— |40

Given a pointer to the node with value 3, we can insert a node with

value -1 before it.

Node twoAndAHalf {-1, ptrTo3, ptrTo3->prev};

insert before a node

head tail
' '
D11 | = 2l ‘ 3| = 410
[P
| ptrTod

The next variable of the node before 3 should now point to twoAndAHalf.

(ptrTo3->prev)->next = &twoAndAHalf;
ptrTo3->prev = &twoAndAHalf;

insert before a node

head taill
! !
D11 |7 <o |2 3| T —

RN
—1

ptrTo3

The Prev variable of node 3 should point to twoAndAHalf.

(ptrTo3->prev)->next = &twoAndAHalf;
ptrTo3->prev = &twoAndAHalf;

Singly Linked List ADT

A < SinglyLinkedList() Creates an empty list.

A.push_front(x) Add T to front of the list.

Remove the first element.

A.pop_front()

Insert = into the list after the node

A.insert_after(lOC, X) with address loc

Remove the element stored in
A.erase_after(loc) the node after the node with
address loc.

Singly Linked List ADT

A < SinglyLinkedList()

A.push_front(x)

All of these operations can be
implemented in constant time.

A.pop_front(x)
A.insert_after(loc, x)

A.erase_after(loc)

std::forward list

There is an implementation of a singly linked list in the standard library.
We have modelled our Singly Linked ADT after this implementation.
This is a bare bones singly linked list:

* There is no A.push_back(x) function.

This saves having a tail variable.

*There is no A.size() function.

Doubly Linked List ADT

A < DoublyLinkedList()

A.front(), A.back()

A.push_front(x), A.push_back(x)

A.pop_front(), A.pop_back()

A.insert(loc, x)

Creates an empty list.

Return the first/last element.

Add x to the front/back
of the list.

Remove the first/last item
of the list.

Insert & into the list before
the node with address loc.

Deque

Deque

In a resizable array, we can only add and remove items at the end of the array.

Sometimes we might want to also add and remove items at the beginning of
the array.

When we always add items to the end, the oldest item in the array is at the
front.

In some applications, we want to access and remove the front item.

A deque allows us to add/remove items at both the front and back.

Deque ADT

A deque is an extension of a resizable array.

It has all the operations of a resizable array plus:

A.push_front(x) Add z to the front of A .

A.pop_front() Remove the first element of A.

Implementation of a
Deque

We can implement a deque with two resizable arrays put "front to front".

arrLeft arrRight
el I N
3 2 | 0 0 | 2 3

arrLeft is drawn backwards---it grows to the left.

In normal operation, push _back/pop back are done on arrRight,
and push_front/pop front are done on arrLeft.

Example

arrlLeft arrRight

Example

arrlLeft arrRight
3 2 | 0 0 | 2 3

A.push_front(3)

Example

arrlLeft arrRight
HEEN
3 2 | 0 0 | 2 3

A.push_front(3)

Example

arrlLeft arrRight
HEEN
3 2 | 0 0 | 2 3

A.push_front(3)

A.push_back(1)

A.push_front(3)

A.push_back(1)

Example

arrlLeft arrRight
3 2 | 0 0 | 2 3

A.push_front(3)
A.push_back(1)

A.push_back(7)

Example

arrlLeft arrRight
3 2 | 0 0 | 2 3

A.push_front(3)
A.push_back(1)

A.push_back(7)

Example

arrlLeft arrRight
3 2 | 0 0 | 2 3

A.push_front(3)
A.push_back(1)
A.push_back(7)

A.push_front(8)

Example

arrlLeft arrRight
3 2 | 0 0 | 2 3

A.push_front(3)
A.push_back(1)
A.push_back(7)

A.push_front(8)

Example

arrlLeft arrRight
3 2 | 0 0 | 2 3

Size

arrlLeft arrRight
3 2 1 0 0 I 2 3
A.size() arrLeft.size() 4+ arrRight.size()

This is constant time as getting the size of a resizable array is constant time.

Get/Set

arrleft arrRight
3 2 | 0 0 | 2 3

if 1 < arrLeft.size() then

A.get(i) arrLeft.get(arrLeft.size() — i — 1)

else

A.get(i) arrRight.get(i — arrLeft.size())

Interesting Case

arrleft arrRight
3 2 | 0 0 | 2 3

A.pop_front()

Interesting Case

arrleft arrRight
3 2 | 0 0 | 2 3

A.pop_front()

Interesting Case

arrleft arrRight
3 2 | 0 0 | 2 3

A.pop_front()

The left array is empty. What do we do now!

We cannot remove the first item from the right array because that
is not an allowed operation on a resizable array.

Rebalance

arrleft arrRight
3 2 | 0 0 | 2 3

We can rebalance the n elements so that Ln/QJ are in the left
array and [n /2] are in the right array.

arrlLeft arrRight

Rebalance

arrleft arrRight
3 2 | 0 0 | 2 3

Like push_back when there is no excess capacity, rebalancing is an
expensive operation.

The time is proportional to the number of elements in the container
at the time of rebalancing.

We can still argue that the amortized complexity of pop_front is
constant.

Rebalance: Amortized

arrleft arrRight
3 2 | 0 0 | 2 3

After reblancing, arrLeft has 1/2] elements and arrRight
has [n/2]| elements.

How many push/pop operations /' must we do until the next rebalance?

Say that arrLeft is the one that becomes empty. At the next rebalancing
the size of the deque willbe S = arrRight.size().

Rebalance: Amortized

arrLeft arrRight arrLeft arrRight

— [1] [BLE
time

3 2 | O o I 2 3 3 2 | O o | 2 3

We do /' push/pop operations until the next rebalancing.
The size of the deque at the time of rebalancing is S = arrRight.size().

The total time of operations plus rebalancing is at most a constant times

S+ T

Rebalance: Amortized

arrLeft arrRight arrLeft arrRight

— [1] [BLE
time

3 2 | O o I 2 3 3 2 | O o | 2 3

We do /' push/pop operations until the next rebalancing.

The size of the deque at the time of rebalancing is S = arrRight.size().

We claimthat 1> S — 1.

Rebalance: Amortized

arrLeft arrRight arrLeft arrRight

— [1] [BLE
time

3 2 | O o I 2 3 3 2 | O o | 2 3

To empty the left array we must do at least |12/2| pop_front operations.

We must also do at least |S — [1/2|| push/pop back operations to change
the size of arrRight to §S.

Thus T'> |[n/2|+ 85— |n/2] > 85 —1.

To recap: Say we do /' push/pop front/back operations before the next
rebalancing and let S be the size of the deque when we rebalance.

We have argued that 1" > S — 1.

Each push/pop front/back (without rebalancing) is constant amortized time,
so the total time for all these is at most a constant times /' . The time to
rebalance is at most a constant times S.

The total time for the I’ operations is at most a constant times /.

Deque Summary

We have seen how to implement a deque in a black-box way with two
resizable arrays.

The time for get/set and size is constant.

The time for push/pop front and push/pop back is amortized constant.

For push front/back this is inherited from our implementation of a resizable
array.

For pop front/back this is due to the need to periodically rebalance.

std:deque

The way we have described implementing a deque with resizable arrays is not
compatible with the C++ standard.

The C++ standard states that no references in a deque are invalidated when
doing, for example, a push front operation.

When using a resizable array, references would be invalidated when we
have to double the size of the array.

A typical C++ implementation of a deque uses a linked list of pointers to
fixed sized arrays.

