Live Coding

|) Pointers

2) C-style arrays
3) New and delete
4) Vector

Sequence
Containers

Sequence Containers

A sequence container holds an ordered collection of values of the same type.

In the recorded lectures we introduced several sequence containers:

Abstract Data Type C++ data structure
Fixed size array C-style array and std::array
Resizable array std::vector

std::list (doubly linked) and

Linked list std::forward_list (singly linked)

Fast and Slow

TBANKING,
FAST..SLOW Before big Oh, there is fast and slow.
=
DANIEL An operation is fast if it takes constant time.

KAHNEMAN
e o s An operation is slow if it can take time proportional
to the number of elements in the container.

Bonus: An operation is fast™ if it takes amortized constant time.
Doing the operation £ times takes time at most a constant times £ .

Sometimes the operation is slow, but the average time per operation is fast.

Jeopardy

std::vector std::list
$100 $100
$200 $200
$300 $300
$400 $400

Fast or Slow

std::vector std::list std::deque

push_back fast™ fast fast™
push_front slow fast fast™
pop_back fast fast fast™
pop_front slow fast fast™
insert in middle slow fast slow
erase from middle slow fast slow
get/set [i] fast slow fast

Practical Summary

Abstract Data Type

C++ data structure

Troy’s comments

Fixed size array

C-style array and
std::array

use std::vector instead

Resizable array

std::vector

start here

std::list (doubly linked)

limited use cases:

Linked list and std::forward_list , .
i - Bjarne's talk
(singly linked)
Deque std::deque alternative to std::vector

when need to push_front

https://www.youtube.com/watch?v=YQs6IC-vgmo

Classes

Student Class

class Student {

std::string name {}; // default access is private
private: // we can explicitly use private
int ID {};
public:

// constructors
Student() {} // default constructor
Student(std::string inputName) {
name = inputName;
}

// we can have many public and private sections
private:

std: :vector<int> scores;
public:

// getter

std: :string getName() {

return name;

Godbolt

https://godbolt.org/z/6aYWKbacr

Header Files

Header File

In large projects code is typically split

#1fndef STUDENT_HPP
#define STUDENT_HPP

fFinclude <string> into header (.hpp) files and implementation
class Student {
Loes S (.cpp) files.
std::string name;
int ID {};
blics A header file contains the declaration of
// ccjons'guctors member functions—the types of the
Student();
Student(std::string, int = 0): parameters and return value.
// getters
std::string getName();
int getID(); .. , ,
}b; Usually the definition (actual implementation)
4endif // STUDENT HPP goes into a corresponding .cpp file.

student.hpp

Implementation

#include <vector>
#include <string>

include header — #include "student.hpp"

// Constructors

Student: :Student() {}

Student::Student(std::string inputName, int inputID)
name {inputName}, ID {inputID} {}

// Getters

std::string Student::getName() {
return name;

}

int Student::getID() {
return ID;

}

student.cpp

User of Student Class

#1include <iostream>
#include "student.hpp"

int main() {
Student robert {"Robert", 45};
std::cout << robert.getName() << '\n';

}

main.cpp
With the student header file the compiler can check if this code makes sense.

This allows separate compilation—we can separately compile main.cpp and
student.cpp and only later link them together.

Compilation

g++ -c student.cpp

student.hpp
g++ -c main.cpp

To compile main.cpp we just need student.hpp and the object file student.o

g++ student.o main.o -o main

Header Guards

#include “student.hpp” #include “student.hpp”

#include “roster.hpp”

roster.hpp main.cpp

Now the student.hpp is (indirectly) included twice in main.cpp.
These results in the Student class being defined twice, an error.

We prevent this with header guards.

#include “student.hpp” #include “student.hpp”

#include “roster.hpp”

roster.hpp main.cpp

- - | & ~ A | = e
g1TnadetT STUDENT HPP
- ‘.f-.. S - \ r\'\
gdetine STUDENT HPPE

The first time we encounter student.hpp the name STUDENT _HPP has
not been defined. The second line then defines it.

The next time we encounter student.hpp, STUDENT _HPP has already been
defined. The “if not defined” is false, so we skip including student.hpp again.

