
Data structures & algorithms
Tutorial 2

Lesson overview

• Recap of important topics from last week

• Introduction to std::vector

• Main operations for std::vector

• Advanced operations for std::vector

• Looping through an std::vector

• Product of array except self problem

• A toy version of a vector

A quick recap of important things from last
week

Data types and declaring and initializing
variables
• Primitives:

• int integerNum;

• double doubleNum;

• float floatNum;

• char character;

• bool booleanValue;

• Non-primitive

• std::string userName;

// must #include <string>

• Declaring and initializing:

• int num; // declaration

• int num {}; // declaration

• int num {24}; // initialization

• int num = 24; // initialization

• Pointer and reference

• int* numPtr {&num}; // Pointer initialization

• int& numPtr {num}; // Reference initialization

• Vector

• std::vector<int> myVector {}; // Vector initialization

// must #include <vector>

• Classes

• MyClass myClass {…}; // Class initialization

• MyClass myClass = MyClass(…); // Static initialization

• MyClass myClass = new MyClass(…); // Dynamic
initialization

Pass by …
• passByValue(int a)

• Pass-by-value functions create a copy of the
original value. Any alterations made to the value
within the function will not change the original

• void passByPointer(int *a)

• Pass-by-pointer functions are passed a pointer
to the original value’s memory address. Any
alterations made to the value within the
function will change the original

• void passByReference(int &a)

• Pass-by-reference functions are passed a
reference to the original value. Any alterations
made to the value within the function will
change the original

• void passByConstReference(const int &a)

• Pass-by-const-reference functions are similar to
pass-by-reference, however, the value is
immutable and can’t be altered

Pointers and References

• Reference, int &value

• A reference assigns an alias to an existing
variable, both allocated to the same memory
address

• Pointer, int *value

• A pointer initializes a variable which contains
the memory address of the variable it is
pointing at

• Address-of, &value

• The address-of operator will return the memory
address of a variable

• Dereference, *value

• The dereference operator will dereference the
pointer and return the value it is pointing to

As initializers As operators

Lab time 😎

std::vector

• A vector is essentially C++’s version of an ArrayList from Java. Once again it is found in
the standard library and can be included within your cpp file with #include <vector>

• For those unfamiliar with ArrayList’s, they are a resizable array that have their elements
stored in contiguous locations. Which allows element access via an index.

• Replacing type with a type of your choosing will only allow storage of that type only. I.e.,
std::vector<int> myVector{}; will only ever be able to store int’s

std::vector<type> myVector{};

std::vector

• myVector[n]: accesses element at index n

• myVector[0] // returns 4 (element at the 0th
index)

• myVector.at(n): accesses element at index n

• myVector.at(2) // returns 9 (element at the
2nd index)

• myVector.front(): accesses element at the front
of the vector

• myVector.front() // returns 4

• myVector.back(): accesses element at the back of
the vector

• myVector.back() // returns 10

Main operations for std::vector

std::vector<int> myVector{4, 5, 9, 10}; // Initialize with values

• myVector.push_back(value): pushes value to
the back of the vector

• myVector.push_back(13) // vector now contains
{4, 5, 9, 10, 13}

• myVector.pop_back(): removes element at the
end of the vector

• myVector.pop_back() // vector now contains {4,
5, 9}

• myVector.size(): returns the size of the vector

• myVector.size() // returns 9 (element at the
2nd index)

• myVector.empty(): empties the vector

• myVector.empty() // vector now contains {}

std::vector

• Both myVector[n] and myVector.at(n) perform the same operation, which allows
you to access elements of the vector via an index.

• The only minor difference is that myVector.at(n) performs a bound checking whilst
myVector[n] doesn’t

• For example, if you have a vector with 5 elements and try to access the 6th element.
myVector.at(n) will perform a bound check and throw an std::out_of_range exception
since the 6th element doesn’t exist. Whilst myVector[n] won’t throw an exception and
will try and access an element that doesn’t exist, which will result in undefined behaviour

myVector[n] vs myVector.at(n)

std::vector

• myVector.begin(): access the element at the beginning of
the vector as an iterator

• *(myVector.begin()) // returns 4

• myVector.end(): access the element one past the end of the
vector as an iterator

• *(myVector.end()) // returns 0 since it is one past the
last element, we can get the last element with
*(myVector.end() - 1)

• myVector.rbegin(): accesses reverse iterator to reverse
beginning

• Is essentially myVector.end() but makes iterating through the vector in
reverse easier

• myVector.rend(): accesses reverse iterator to reverse end

• Is essentially myVector.begin() but makes iterating through the vector in
reverse easier

Advanced operations for std::vector

std::vector<int> myVector{4, 5, 9, 10}; // Initialize with values

std::vector

for(int i = 0; i < myVector.size(); i++) {
 std::cout << myVector.at(i) << std::endl
}

Looping through an std::vector

for(int i : myVector) {
 std::cout << i << std::endl
}

for(auto i = myVector.begin(); i != myVector.end(); i++) {
 std::cout << *i << std::endl
}

For loop

Range based for loop

For loop with iterators

Give “playing with std::vector” a crack to see how
vectors work

Product of array except self

• The goal is to return a std::vector result of the same size as nums such that
results[n] is the product of all the integers in nums except for the ith one.

nums 4 2 5 1 3

Product of array except self

nums 4 2 5 1 3

results 30 60 24 120 40

• The goal is to return a std::vector result of the same size as nums such that
results[n] is the product of all the integers in nums except for the ith one.

Product of array except self

nums 4 2 5 1 3

results 30 60 24 120 40

4 2 5 1 3x x x x/ 30=

• The goal is to return a std::vector result of the same size as nums such that
results[n] is the product of all the integers in nums except for the ith one.

Product of array except self

nums 4 2 5 1 3

results 30 60 24 120 40

4 2 5 1 3x x x x/ 60=

• The goal is to return a std::vector result of the same size as nums such that
results[n] is the product of all the integers in nums except for the ith one.

Product of array except self

nums 4 2 5 1 3

results 30 60 24 120 40

4 2 5 1 3x x x x/ 24=

• The goal is to return a std::vector result of the same size as nums such that
results[n] is the product of all the integers in nums except for the ith one.

Product of array except self

nums 4 2 5 1 3

results 30 60 24 120 40

4 2 5 1 3x x x x/ 120=

• The goal is to return a std::vector result of the same size as nums such that
results[n] is the product of all the integers in nums except for the ith one.

Product of array except self

nums 4 2 5 1 3

results 30 60 24 120 40

4 2 5 1 3x x x x / 40=

• The goal is to return a std::vector result of the same size as nums such that
results[n] is the product of all the integers in nums except for the ith one.

Product of array except self: brute-force
std::vector<int> productExceptSelf(const std::vector<int>& nums) {

std::vector<int> results{};
for(unsigned int i = 0; i < nums.size(); i++) {

int sum {1};
for(unsigned int j = 0; j < nums.size(); j++) {

if(i == j) continue;
sum *= nums.at(j);

}
results.push_back(sum);

}
return results;

} • This is the most general brute-force approach for this problem. A brute-force approach is
usually slower than a more optimized one, but it is usually easy to think of and confirms that
the problem is solvable

Product of array except self: brute-force
std::vector<int> productExceptSelf(const std::vector<int>& nums) {

std::vector<int> results{};
for(unsigned int i = 0; i < nums.size(); i++) {

int sum {1};
for(unsigned int j = 0; j < nums.size(); j++) {

if(i == j) continue;
sum *= nums.at(j);

}
results.push_back(sum);

}
return results;

} • This is the most general brute-force approach for this problem. A brute-force approach is
usually slower than a more optimized one, but it is usually easy to think of and confirms that
the problem is solvable

• Due to the nested for-loops, the problem has a time complexity of O(n^2). This means if you
use an array with 5 elements in it, it will take on average 5^2 iterations

Product of array except self: brute-force
std::vector<int> productExceptSelf(const std::vector<int>& nums) {

std::vector<int> results{};
for(unsigned int i = 0; i < nums.size(); i++) {

int sum {1};
for(unsigned int j = 0; j < nums.size(); j++) {

if(i == j) continue;
sum *= nums.at(j);

}
results.push_back(sum);

}
return results;

} • This is the most general brute-force approach for this problem. A brute-force approach is
usually slower than a more optimized one, but it is usually easy to think of and confirms that
the problem is solvable

• Due to the nested for-loops, the problem has a time complexity of O(n^2). This means if you
use an array with 5 elements in it, it will take on average 5^2 iterations to solve

• Before I let you try and implement a better solution, here's a hint. What if the array has no
zeros, one zero, or two zeros

Give “product of array except self” a go and see what
solutions you come up with

A toy version of vector
I’m going to let you try and write out the member functions for our MyVector
class, I’d suggest creating the functions in this order:

1. Constructor, one to make an n-sized array, and another to create one with a
pre-existing list

2. Size, capacity, empty, and back (very simple, only one line of code!)

3. Operator function which allows you to get and set the ith element

4. Destructor to the dynamically allocated memory in MyVector

5. Pop_back to remove the last element in the vector

6. Push_back, this will be the trickiest one to implement. This function will
allow you to insert a new element to the end of the vector, and once the
vector is full you will need to implement the array doubling scheme you saw
in the lecture

Access to google drive

•I will upload slides to the Google Drive after every class

•https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_

ODNJOfgq9-uI

Contact: Thomas.golding@uts.edu.au

https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI
https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI

