Topics for Today

e Revision

e Questions from last week
o How to write C++ on my machine?
o Whydo wewrite int a{}; ?

e (C++theory
o Initialising variables
o The standard library (std)
o Preprocessor directives
o Compilation (.cpp & .h)
o Vectors
e This week’s lab
o Product of Array Except Self
o Toy Vector

Pointers and References

As initialisers

int* x “Pointer”
Initialises a variable containing a
memory address.

Contains:

0x00000000

int& x “Reference”
Initialises an alias for an existing
variable. They both refer to the
same memory address to
read/write their data.

Contains: data

As operators

&X “Address of”
Get the address of this
variable.

Returns:

0x00000000

*X “Dereference”

Gets the data stored in that
memory address.

Used on pointers.

Returns: data

As function parameters

Function parameters use the initialiser rules from the previous table.

int myFunc(int& x){}
Gives you the original, editable
variable in the function body.

int myFunc(const int& x){}
Same as above, but will not compile if
you make any changes.

int myFunc(int x){}

Gives you a copy of x to use within the
function body. Changes to x within the
function do not affect the original variable.

int myFunc(int* x){}

Gives you a pointer, this is useful for
objects that we store on the heap (talk
about this later).

What did we learn last lab?

One thing from each corner of the room

// Printing:

std::cout << "Hello maties" << " I hope you've had a good week." << "\n";

// Receiving input:
// 1. Preallocate memory
std::string inputString{};

// 2. Stream extract into your allocated memory
std::cin >> inputString;

Q: Why do we put {} after our variables?

In C++, if we just make a variable like int a; then we are allocating space for it,
but not doing anything to that space. So, anything that was stored there in RAM
previously is still there. So C++ may not allow us to use it until it has been
initialised.

Initialising with int b{}; on the other hand, will allocate the memory and clear
it out, making it safe to use.
It zero-initialises the variable for any type, ie works for string, float, pointers, etc.

IDE/Text Editor and Compiler

There were some concerns last week about compiling C++ programs locally.

My advice is to install Visual Studio 2022, with the C++ workloads.
If you do this, you don't have to worry about setting everything up and get a good
predictive IDE with a fantastic debugger out of the box.

Text Editor: IDE:

An application that you can use to load and A smart application that has more indepth
edit text files to write your code. features at the cost of being more

Use command line to do anything with it. expensive to run. Generally plug & play.

ie compile code, run code, etc Handles anything command line you would

need to do.

Visual Studio Installer

Installed Available

Allinstallations are up to date. Developer News

. - . WinForms Designer Selection for 32-bit .NET
0@ Visual Studio Enterprise 2022 LTSC 17.8 Framework Projects
1787

Visual Studio 2022's transition to a 64-bit architec...
Thursday, 29 February 2024
Scalable, end-to-end solution for teams of any size

It's actually really easy.

In 2023, we added many new features, fixes, and i...
Monday, 26 February 2024

A Year of C++ Game Development Improvements
in Visual Studio

Game development is evolving rapidly and keepi..
Friday, 23 February 2024

View more Microsoft developer news..
Need help? Check out the Microsoft Developer
Community or reach us via Visual Studio
Support.

Installer version 3.9.2164.57262

Modifying — Visual Studio Enterprise 2022 LTSC 17.8 — 17.8.7

Workloads Individual components Language packs Installation locations

Desktop & Mobile (5)

“ .NET Multi-platform App Ul development
Build Android, iOS, Windows, and Mac apps from a single
codebase using C# with .NET MAUL.

j .NET desktop development
Build WPF, Windows Forms, and console applications
using C#, Visual Basic, and F# with .NET and .NET Frame...

You can also get a student
I i C e n S e fo r Ri d e r’ b ut yo u Defktop development with Cf") Universal V\{inc!ows Platform fievelopnf\ent

. Build modern C++ apps for Windows using tools of your Create applications for the Universal Windows Platform
S-t I I I n eed -to fo I I OW -t h eS e choice, including MSVC, Clang, CMake, or MSBuild. with C#, VB, or optionally C++.
steps.

Mobile development with C++

Build cross-platform applications for iOS, Android or
Windows using C++.

::vector<char> sillyStringl;

::vector<char> sillyString2 {};

::vector<char> sillyString3 {'h','a','h','a'};
::vector<char> sillyStringd4 (5, 'h');
::vector<char> sillyString5 (sillyString3);

int numbery{
int* pointy

MyClass freddy{}; glm::matd view = glm::matd(1.06f);
Hyctass jonesy = "yaais("“"esy")i glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);
* = " 3 ny.
HyClas=® mcp = use fiyclass(Het Bodnty) glm::vec3 cameraFront = glm::vec3(0.0f, 0.6f, -1.0f);

// C++ options

MyClass henry("Henry");

MyClass greg("Gregor", 55);

MyClass* mitchell = new MyClass("Mitchell", 22);
MyClass* oscar{ new MyClass("Oscar", 73) };

// C#/Java style
List<int> list = new List<int>();

class MyClass {
public:
l int a;

float b;

std::string c;

MyClass(int x, float y, std::string z) : a(x), b(y), c(z) {}

main() {
MyClass obj = { 42, 3.14f, "hello" };

return 0;

The Standard Library

C++ is entirely backwards compatible with C. As such C has priority in naming
conventions. To make C++ a more modern language, the standard library was
introduced. Anything that is prefaced with std: : is a standard library feature.
Primitive types comes from C and do not need std: : ie int, bool, float

Useful standard library features:

std: :string - Much nicer than old e std::stack/queue
c-strings. e std::list
std: :cout/cin - useful I/0. e std::map

std: :vector - variable length arrays.

When to expect to use std

C tends to be a more low level C++ is an extension on C that
language. From C we get our wants to have more high level
basic data types, i.e. function. For this case we can
int, char, float, int[], usethe standard library,i.e.
int*, intég, std::string, std::vector

sizeof (), *ptr, elcC

Preprocessor Directives
Things beginning with #

There are several stages to C/C++ compilation.
One of the first is preprocessing.
These make alterations to the source code for us.

For instance:
1N¢ _P_I 3.1415926536

main()

std::sinf(2 * PI);

std::sinf(2 * 3.1415926536);

int add(int x, int y) {
return x + y;
#include "add.cpp"

Bint add(int x, int y) {@ . . :00) int i maint)
‘ return x + y;
} int a{ 5 }; 5 int a{ 5 };

int b{ 17 }; : int b{ 17 };

int sum{}; i int sum{};
sum = add(a, b); . sum = add(a, b);

int main()

{

// Declaration
int add(int x, int y);
int x{};

x = add(99, 1); jint main()

}

int sum{};

int add(int x, int y) { i S

return x + y;

}

} // Definition
jint add(int x, int y) {

return x + y;

#tinclude "MyClass.h"

MyClass.obj main.obj

MyClass.obj

Defines: MyClass Has declarations

Defines: MyClass variables & funcs for MyClass obj

variables & funcs
int id;
st;::string name;

public:
| MyClass();
MyClass(std::string name);
y void Perform();
lint MyClass::getId() { i dnt getId(); q a
return id; { std::string getName(); maln_ObJ

Istd::string MyClass::getNamg

et e Has declarations
for MyClass obj

#include <iostream> H : :
#include "MyClass.h" NSl i FmycClass objectInst{ MyClass("Joan") };
std::cout <« "MyClass instance's name: "

int mainC) << objectInst.getName() << "\n";

MyClass objectInst{ MyClass("Joan") };
std::cout <« "MyClass instance's name: "

4 Istd::string MyClass::getName() {
<< objectInst.getName() << "\n";

return name;

5 (std: :vector< >& vec)

std: :cout Length: vec.size() \tContents:

size_t i=0; i < vec.size(); i++)

Vectors

This is the first non-primitive data structure we'll be using in this class.
It is C++'s resizable array. It is a lot more high level and flexible than C style fixed arrays, so
it's more useful for us but we should still maintain a low level understanding.

To make a vector we have to provide it with a type to make its elements, this is called a
template, more on this next week.

> emptyVectorir;
ts(emptyVector); Length: O Contents:
> lengthSVector| °); Length: 5 Contents: f
tents(lengthS5Vector); Length: 6 Contents:
ector<int> prefilledVector

(prefilledVector);

Vectors

We can add elements to our vectors in a few ways:

Overwrite a current value:

More complex ways we can talk about in future weeks

Product of Array Except Self

This exercise is a step up in difficulty from last week’s exercises. Friction is learning!

Given a vector, you must return a vector where each element is the product of all
elements in apart from the element of the same index.

[1,23]=>] , , 1 =>1[63, 2]

1*¥2*3 1*2*3 1*2*3

I'll walk you through the straightforward
solution to this, and then we can talk about
the smarter and faster solution.

std::vector<int> productExceptSelf(const std::vector<int>& nums) { e pr;d“CtExceptse”(“"St SEREEEE ST
! int numZeros = O;
std::vector<int> result(nums.size(), 0); he Proatctuithoitzeros 01
: std::size_t zeroIndex = nums.size();
s 3 = s & S ! // compute
for (std::size_t i = @; i < nums.size(); i+) { B
i int Sum{ 1 }; // 2) product of all non-zeros in nums
for (std::size_t k = e; k < nums.size(); l-(H) { // 3) index of a zero in nums, if there is one
= n 4 for (std::size_t i = 0; i < nums.size(); +i) {
if (1 = k) { 1 if (nums[i] == @) {
; +numZeros;
} zeroIndex = i;

¢ i sum *= nums|[

}

result[i] = sum; ithoutZeros *= nums[il;

return result; // initialise result to be all zero vector

::vector<int> result(nums.size());
if (numZeros
for (std::size_t i = 0; i < nums.size(); +i) {
. result[i] = productWithoutZeros / nums[i];
}
return result;
}
// when numZeros == 1, we just have to correct the
// entry of result corresponding to the © in nums
if (numZeros == 1) {
result[zeroIndex] = productWithoutZeros;
: return result;
}
// when numZeros = 2, result (= all zero vector) is correct answer
return result;

Toy Vector

Here we are implementing our own version of the Vector class, to get a better feel for how
it works under the hood.

| suggest we implement the functions in this order:

e Constructor that takes an integer input n- Create an all-zero vector of size n
MyVector: :MyVector (int n)

operator [] - Get/set the ith element of the vector, as in vec[0] = 5;

Getters for the size, capacity, and last element of the vector (back)

Destructor- Free the memory allocated for the underlying array. Mmyvector: : ~Myvector ()
pop_back -Remove the last element of the vector.

push back - Add a new element to the end of the vector. This is the most interesting
one. Implement the doubling array scheme that we discussed in lecture.

