
Topics for Today
● Revision
● Questions from last week

○ How to write C++ on my machine?
○ Why do we write int a{}; ?

● C++ theory
○ Initialising variables
○ The standard library (std)
○ Preprocessor directives
○ Compilation (.cpp & .h)
○ Vectors

● This week’s lab
○ Product of Array Except Self
○ Toy Vector

Pointers and References
As initialisers

int* x “Pointer”
Initialises a variable containing a
memory address.
Contains:
0x00000000

As operators

int& x “Reference”
Initialises an alias for an existing
variable. They both refer to the
same memory address to
read/write their data.
Contains: data

&x “Address of”
Get the address of this
variable.
Returns:
0x00000000

*x “Dereference”
Gets the data stored in that
memory address.
Used on pointers.
Returns: data

As function parameters
Function parameters use the initialiser rules from the previous table.

int myFunc(int& x){}
Gives you the original, editable
variable in the function body.

int myFunc(const int& x){}
Same as above, but will not compile if
you make any changes.

int myFunc(int x){}
Gives you a copy of x to use within the
function body. Changes to x within the
function do not affect the original variable.

int myFunc(int* x){}
Gives you a pointer, this is useful for
objects that we store on the heap (talk
about this later).

What did we learn last lab?

One thing from each corner of the room

What did we learn last lab?

Q: Why do we put {} after our variables?

In C++, if we just make a variable like int a; then we are allocating space for it,
but not doing anything to that space. So, anything that was stored there in RAM
previously is still there. So C++ may not allow us to use it until it has been
initialised.

Initialising with int b{}; on the other hand, will allocate the memory and clear
it out, making it safe to use.
It zero-initialises the variable for any type, ie works for string, float, pointers, etc.

IDE/Text Editor and Compiler

There were some concerns last week about compiling C++ programs locally.

My advice is to install Visual Studio 2022, with the C++ workloads.
If you do this, you don’t have to worry about setting everything up and get a good
predictive IDE with a fantastic debugger out of the box.

IDE:
A smart application that has more indepth
features at the cost of being more
expensive to run. Generally plug & play.
Handles anything command line you would
need to do.

Text Editor:
An application that you can use to load and
edit text files to write your code.
Use command line to do anything with it.
ie compile code, run code, etc

It’s actually really easy.

You can also get a student
license for Rider, but you
still need to follow these
steps.

Declaring and Initialising Variables

type name initialiser

type name initialiser

type name initialisertypename initialiser

C++ has a different style as well

name initialisertype

C++ also has initialiser lists

The Standard Library

C++ is entirely backwards compatible with C. As such C has priority in naming
conventions. To make C++ a more modern language, the standard library was
introduced. Anything that is prefaced with std:: is a standard library feature.
Primitive types comes from C and do not need std:: ie int, bool, float

Useful standard library features:
● std::string - Much nicer than old

c-strings.
● std::cout/cin - useful I/O.
● std::vector - variable length arrays.

● std::stack/queue
● std::list
● std::map

When to expect to use std

C tends to be a more low level
language. From C we get our
basic data types, i.e.
int, char, float, int[],
int*, int&,
sizeof(),*ptr, etc

C++ is an extension on C that
wants to have more high level
function. For this case we can
use the standard library, i.e.
std::string, std::vector

Preprocessor Directives
Things beginning with #

There are several stages to C/C++ compilation.
One of the first is preprocessing.
These make alterations to the source code for us.

For instance:

#include
We have mostly seen #include
so far in this course.
What does it do?
It copies and pastes the contents
of a file into a file for us.

Example:

add.cpp

main.cpp

main.cpp

Note: we use
<library> and “localFile”

Before preprocessing:

After preprocessing:

A brief aside: the top-to-bottom Compiler

This is illegal because the add
function is called before it is
declared.

However, this is legal.
The add function is declared before it
is called, and can be defined later.

A function or variable cannot be called before it is declared, the compiler
will not know what it is yet. Definition is allowed to come later.

This is why header files are useful.
There we can declare everything so we can safely call In any order below.

Each function gets a unique signature based on its name, return type and parameters.
These signatures are used to connect function calls to their implementations.

Compilation/Header and Source Files Explained
The compiler uses the following process:
1. Preprocessing – Resolves lines starting with # in each cpp file.
2. Per cpp compilation – Compiles each cpp file individually.
3. Linking – links together functionality in different files.

1. Preprocessing 2. cpp Compilation 3. Linking
MyClass.cpp

MyClass.h

main.cpp

MyClass.obj

Defines: MyClass
variables & funcs

main.obj

Has declarations
for MyClass obj

MyClass.obj

Defines: MyClass
variables & funcs

main.obj

Has declarations
for MyClass obj

Vectors

This is the first non-primitive data structure we’ll be using in this class.
It is C++’s resizable array. It is a lot more high level and flexible than C style fixed arrays, so
it’s more useful for us but we should still maintain a low level understanding.

To make a vector we have to provide it with a type to make its elements, this is called a
template, more on this next week.

Vectors

We can add elements to our vectors in a few ways:

Overwrite a current value:

Add an element to the end:

More complex ways we can talk about in future weeks

Product of Array Except Self

This exercise is a step up in difficulty from last week’s exercises. Friction is learning!

Given a vector, you must return a vector where each element is the product of all
elements in apart from the element of the same index.

[1,2,3] => [, ,] => [6, 3, 2]

I’ll walk you through the straightforward
solution to this, and then we can talk about
the smarter and faster solution.

1*2*3 1*2*3 1*2*3

O(n^2) and O(n) solutions to AXS

Worst case: O(n^2)
Best case: O(n^2)
Middle case: O(n^2)

Worst case: O(2*n)
Best case: O(n)
Middle case: Either

Toy Vector

Here we are implementing our own version of the Vector class, to get a better feel for how
it works under the hood.

I suggest we implement the functions in this order:

● Constructor that takes an integer input n- Create an all-zero vector of size n
MyVector::MyVector(int n)

● operator[] - Get/set the ith element of the vector, as in vec[0] = 5;
● Getters for the size, capacity, and last element of the vector (back)
● Destructor- Free the memory allocated for the underlying array. MyVector::~MyVector()
● pop_back - Remove the last element of the vector.
● push_back - Add a new element to the end of the vector. This is the most interesting

one. Implement the doubling array scheme that we discussed in lecture.

