Templates



Swap Function

void swap(int& x, int& y) {
int temp = Xx;

X = y; https://godbolt.org/z/vszT69xz|

y = temp;

Here we have a function that swaps the values of two ints.

But a swap function is useful for many different types...



Swap Function

void swap(int& x, int& y) { void swap(double& x, double& y) { void swap(std::string& x, std::string& y) {
int temp = Xx; double temp = Xx; std::string temp = x;
X =Y X =Y X = Ys
y = temp; y = temp; y = temp;

} } }

The only thing changing in this code is the type.

Is there a way to save us having to write this function over and over with
different types?

Yes, templates!



Templates

template <typename T>

void my swap(T& x, T& y) {
T temp = X;
X = y; https://godbolt.org/z/c35fcKxvr
y = temp;

A template gives us a parameter to represent a type. This parameter can
be instantiated with different types.

int a {3}; std::string hello {"Hello"};
int b {5}; std::string world {"World"};
my swap<int>(a,b); my swap<std::string>(hello, world);

We can also omit the type inside the angle brackets: the compiler can
deduce it.



Templates

template <typename T>

void my swap(T& x, T& y) {
T temp = X;
X = y; https://godbolt.org/z/c35fcKxvr
y = temp;

A template moves the work of instantiating the code with different types
from the programmer to the compiler.

The compiler will explicitly write a version of the function for every type
needed.



Print Function

template <typename T>
void print(const std::vector<T>& vec) {
for (const T& x : vec) {
std::cout << x << '\n'; https://godbolt.org/z/fIW914PEb7
}

std::cout << '\n';

We can write a function to print a vector containing any type of element.

Here T stands for the type of elements in the vector.



Print Function

template<typename T>
void print(const std::vector<T>& vec) {
for (const auto& x : vec) {

std::cout << x << '\n';

}

std::cout << '\n';

The compiler can deduce the type of element in the container. VWe can use
auto in the for loop instead.



Print Function

void print(const auto& container) {
for (const auto& x : container) {

std::cout << x << '\n';

} https://godbolt.org/z/6g8n6eM4f

std::cout << '\n';

As of C++20 you can also use auto in the parameter list too!

This prints out the contents of any container that allows range-based for
loops.

The auto syntax is easier than using a template type for the container and
for the type of element in the container.



Back to dswap

void my swap(auto& x, auto& y) {
auto temp = X;
X = Y;

y = temp;

https://godbolt.org/z/z469b6d1z

A difference between auto and explicitly using a template type is that with a
template we can express that the type of x and y is the same.

auto here allows x and y to be of different types, which may not compile.



Templated Class

We can also use templates in defining a class.

VWVe can upgrade our Mylnteger class to be a wrapper around an arbitrary
type, rather than just an integer.

We follow the exposition of Stepanov to create a templated “Singleton” class.

Efficient Programming with Components, Lecture 2 Part |



Templated Class

We can also use templates in defining a class.

VWVe can upgrade our Mylnteger class to be a wrapper around an arbitrary
type, rather than just an integer.

We follow the exposition of Stepanov to create a templated “Singleton” class.

Efficient Programming with Components, Lecture 2 Part |



class MyInteger {
private:

int value We can make this a templated class to

*1 constructor allow not just an int but any type™.

explicit MyInteger(int input = ©) : value {input} {}

// copy constructor
MyInteger(const MyInteger& x) : value {x.value} {}

// assignment operator

MyInteger& operator=(const MyInteger& x) {
value = x.value;
return xthis:;

}

// destructor
~MyInteger() {}

// determine 1f two MyIntegers are equal
friend bool operator==(const MyInteger& x, const MyInteger& y) {
return x.value == y.value;

}

// determine 1f one MyInteger 1s less than another
friend bool operator<(const MyInteger& x, const MyInteger& y) {
return x.value < y.value;
s
-

*what operations must a type allow for this to work?



template <typename T>
class Singleton {
private:

T value (3; Doing this is as easy as replacing int
*11 constructor everywhere with T.

explicit Singleton(T input = T {}) : value {input} {}

// copy constructor
Singleton(const Singleton& x) : value {x.value} {}

// assignment operator We can instantiate this class as

Singleton& operator=(const Singleton& x) {
value = x.value;
return xthis;
} Singleton<int> x {3};

Singleton<std::string> z {"hello"};
// destructor

~Singleton() {}

// determine 1f two Singletons are equal

friend bool operator==(const Singleton& x, const Singleton& y) { The type in the angle braCI(ets Can

return x.value == y.value;

} also be omitted.

// determine 1f one Singleton 1s less than another
friend bool operator<(const Singleton& x, const Singleton& y) {
return x.value < y.value;
by
ry



Iterators



Let’s say we have an array and we want to determine if it contains a given
element.

Let’s consider a general version of the problem where we search in a
range of elements in the array specified by two pointers.

o mlrfofofs]afe
T T

first last

We wiill use a half-open range: from first up to but not including last.



int* find(int* first, int* last, int value) {
int* ptr = first;

for (; ptr != last; ++ptr) {
if (*ptr == value) {
https://godbolt.org/z/4TxzGKWY6
return ptr;

}
}

return ptr;

}

If value is not found in the range we return last.

This serves as a sentinel value as it is not part of the range.



int* find(int* first, int* last, int value) {
int* ptr = first;

for (; ptr != last; ++ptr) {
if (*ptr == value) {
https://godbolt.org/z/4TxzGKWY6
return ptr;

}
}

return ptr;

}

Find is a natural operation that we might want to implement for any
container.

Do we have to write a separate function for each container?



Algorithms Containers

< algorithm >

std :;: sort std :;: vector
std :: find std :;: 1list
std :: count std :: deque

std :: any_of

If we have m algorithms and n containers, we would have to write m xn
functions.



Generic Programming

Start with a concrete algorithm.

int* find(int* first, int* last, int value) {
int* ptr = first;
for (; ptr != last; ++ptr) {
if (*ptr == value) {
return ptr;
}
}

return ptr;

}

ldentify the primitive operations that make this algorithm work.

Generalize the algorithm to any type that supports those primitive operations.



Generic Programming

int* find(int* first, int* last, int value) {
int* ptr = first;
for (; ptr != last; ++ptr) {
if (*ptr == value) {
return ptr;

}
}

return ptr;

}

Let us abstract out the functionality provided by pointers here:

We can increment a pointer (go to next element).

We can check if two pointers are equal.

We can dereference a pointer.



[terators

An iterator is like a generalized pointer, that supports these operations
(and sometimes more).

Every C++ sequence container defines an iterator.

We can then write algorithms generically in terms of iterators.



Algorithms Containers

< algorithm >

std :: sort \ — std :: vector
std :: find ———nou ___ _——std: list
std :: count— — ———— std :: deque

std :: any_ot — \ std :: array

Iterators are the link between algorithms and containers in C++.

Each sequence container defines an iterator.

Algorithms are then generically written in terms of iterators™.



Types of Iterators

There is a hiccup in this nice picture. Ve don’t want to pay any price in
performance for a more generic algorithm.

The way we can access elements varies depending on the container.

In a singly linked list we can only move forward, not backward.

—P forward iterator

In a doubly linked list we can move forward or backward.

—P» bidirectional iterator

In a vector we can quickly jump to any element.

—» random access iterator



Hali-Open Intervals

As in our find example, many standard library algorithms work on a half-open
range specified by two iterators.

HEENEEEN
i i

first last



Begin and End

Every sequence container provides two member functions that return an
iterator, begin and end.

HEENEEEN
i |

vec.begin() vec.end()

begin points to the first element in the container.
end is a sentinel value that is not part of the container.

vec.end() should not be dereferenced.



Begin and End

Every sequence container provides two member functions that return an
iterator, begin and end.

HEENEEEN
i |

vec.begin() vec.end()

The half-open range from vec.begin() up to but not including vec.end()
is the entire vector.



Find Example

Here is how we can use the find function in the standard library.

std::list<int> 1i {1,2,3,4};
auto it = std::find(li.begin(), li.end(), 3);

This returns an iterator to the first occurrence of 3 in the list.



[terating over a container

Iterating through a list:

std::1list<int> 1i {1,2,3,4};
for (std::list<int>::iterator it = li.begin(); it != li.end(); ++it) {
std::cout << *it << '\n';

}

Iterators adopt the dereferencing syntax from pointers:

xit is the value pointed to by the iterator it.



Use of Iterators

Iterating through a list:

std::list<int> 1i {1,2,3,4};
for (std::list<int>::iterator it = li.begin(); it != li.end(); ++it) {
std::cout << *it << '\n';

}
* the same idiom can be used for any other sequence container.

* iterators for 1ist do not support comparison.

* this is a good time for auto.



[terating backwards

There is a nice syntax for iterating backwards over a container

std::1list<int> 1i {1,2,3,4};
for (auto it = li.rbegin(); it != li.rend(); ++it) {
std::cout << *it << '\n';

}

This uses rbegin and rend which return a reverse iterator.

Other than that the syntax is the same—we increment the reverse iterator.



