
Data structures & algorithms
Tutorial 3

Lesson overview

• Recap of important topics from last week

• Introduction to templates and templated functions

• Improving MyVector

• Linked Lists

• Singly Linked Lists

• Types of linked lists

• Templating MyVector

A quick recap of important things from last
week

std::vector

• A vector is essentially C++’s version of an ArrayList from Java. Once again it is found in
the standard library and can be included within your cpp file with #include <vector>

• For those unfamiliar with ArrayList’s, they are a resizable array that have their elements
stored in contiguous locations. Which allows element access via an index.

• Replacing type with a type of your choosing will only allow storage of that type only. I.e.,
std::vector<int> myVector{}; will only ever be able to store int’s

• We also implemented our own vector in our MyVector class that can resize, which used a
C-style array as the underlying structure

std::vector<type> myVector{};

std::vector

• myVector[n]: accesses element at index n

• myVector[0] // returns 4 (element at the 0th
index)

• myVector.at(n): accesses element at index n

• myVector.at(2) // returns 9 (element at the
2nd index)

• myVector.front(): accesses element at the front
of the vector

• myVector.front() // returns 4

• myVector.back(): accesses element at the back of
the vector

• myVector.back() // returns 10

Main operations for std::vector

std::vector<int> myVector{4, 5, 9, 10}; // Initialize with values

• myVector.push_back(value): pushes value to
the back of the vector

• myVector.push_back(13) // vector now contains
{4, 5, 9, 10, 13}

• myVector.pop_back(): removes element at the
end of the vector

• myVector.pop_back() // vector now contains {4,
5, 9}

• myVector.size(): returns the size of the vector

• myVector.size() // returns 9 (element at the
2nd index)

• myVector.empty(): empties the vector

• myVector.empty() // vector now contains {}

std::vector

• myVector.begin(): access the element at the beginning of
the vector as an iterator

• *(myVector.begin()) // returns 4

• myVector.end(): access the element one past the end of the
vector as an iterator

• *(myVector.end()) // returns 0 since it is one past the
last element, we can get the last element with
*(myVector.end() - 1)

• myVector.rbegin(): accesses reverse iterator to reverse
beginning

• Is essentially myVector.end() but makes iterating through the vector in
reverse easier

• myVector.rend(): accesses reverse iterator to reverse end

• Is essentially myVector.begin() but makes iterating through the vector in
reverse easier

Advanced operations for std::vector

std::vector<int> myVector{4, 5, 9, 10}; // Initialize with values

std::vector

for(int i = 0; i < myVector.size(); i++) {
 std::cout << myVector.at(i) << std::endl
}

Looping through an std::vector

for(int i : myVector) {
 std::cout << i << std::endl
}

for(auto i = myVector.begin(); i != myVector.end(); i++) {
 std::cout << *i << std::endl
}

For loop

Range based for loop

For loop with iterators

Lab time 😎

Templates

• Templates are similar to Java’s generics except better, they allow you to define a blueprint
for a class or function in which the user can use any type

• Consider this doubleValue function, currently it only accepts int’s … But what if we
want to double the value of a double?

int doubleValue(int a) {
return a * 2;

}

Templates

• Templates are similar to Java’s generics except better, they allow you to define a blueprint
for a class or function in which the user can use any type

• Consider this doubleValue function, currently it only accepts int’s … But what if we
want to double the value of a double? Then we’d need to create a completely new
function to do so. And if we wanted to double a more types, we’d need even more code!

double doubleValue(double a) {
return a * 2;

}

int doubleValue(int a) {
return a * 2;

}

Templates

• Templates are similar to Java’s generics except better, they allow you to define a blueprint
for a class or function in which the user can use any type

• Consider this doubleValue function, currently it only accepts int’s … But what if we
want to double the value of a double? Then we’d need to create a completely new
function to do so. And if we wanted to double a more types, we’d need even more code!

• We can instead make doubleValue a template function, and allow it to accept a
generic type as a parameter.

double doubleValue(double a) {
return a * 2;

}

int doubleValue(int a) {
return a * 2;

}

Templates

• Templates are similar to Java’s generics except better, they allow you to define a blueprint
for a class or function in which the user can use any type

• Consider this doubleValue function, currently it only accepts int’s … But what if we
want to double the value of a double? Then we’d need to create a completely new
function to do so. And if we wanted to double a more types, we’d need even more code!

• We can instead make doubleValue a template function, and allow it to accept a
generic type as a parameter.

template <typename T>
T doubleValue(T a) {

return a * 2;
}

Templates

• The T can be anything you want it to be…

template <typename T>
T doubleValue(T a) {

return a * 2;
}

Templates

• The T is the generic type, and it can be called anything you want it to be … cat

template <typename cat>
cat doubleValue(cat a) {

return a * 2;
}

Templates

• The T is the generic type, and it can be called anything you want it to be… cat, guitar

template <typename guitar>
guitar doubleValue(guitar a) {

return a * 2;
}

Templates

• The T is the generic type, and it can be called anything you want it to be… cat, guitar,
dsa…etc.

template <typename dsa>
dsa doubleValue(dsa a) {

return a * 2;
}

Templates

• The T is the generic type, and it can be called anything you want it to be… cat, guitar,
dsa…etc.

• You are also allowed to include as many generic types as you want! Which can become
extremely useful when creating a templated class.

template <typename T1, typename T2…>
T1 doubleValue(T1 a, T2 b) {

std::cout << b << std::endl;
return a * 2;

}

Templates

• The T is the generic type, and it can be called anything you want it to be… cat, guitar,
dsa…etc.

• You are also allowed to include as many generic types as you want! Which can become
extremely useful when creating a templated class

• When calling the doubleValue function, you can explicitly specify you type you would
like… int myValueDoubled = doubleValue<int>(10)

template <typename T>
T doubleValue(T a) {

return a * 2;
}

Templates

• The T is the generic type, and it can be called anything you want it to be… cat, guitar,
dsa…etc.

• You are also allowed to include as many generic types as you want! Which can become
extremely useful when creating a templated class

• When calling the doubleValue function, you can explicitly specify you type you would like…
int myValueDoubled = doubleValue<int>(10)

• You’ve actually been using template everytime you call std::vector<int> myVector{}

template <typename T>
T doubleValue(T a) {

return a * 2;
}

Give “Templated functions” a go to see how they
work!

Copy constructor

• We will be revisiting MyVector from last week and improving it. What we will be implementing is a
copy constructor and a copy assignment operator to make a deep copy of another MyVector.

int main() {
MyVector myVector{1, 2, 3, 4};
MyVector shallowCopy{myVector};

return 0;
}

Copy constructor

• We will be revisiting MyVector from last week and improving it. What we will be implementing is a
copy constructor and a copy assignment operator to make a deep copy of another MyVector.

• There is a primary difference between a shallow copy and a deep copy. A shallow copy is very similar to
a reference, in the fact that the if you alter the shallow copy…

int main() {
MyVector myVector{1, 2, 3, 4};
MyVector shallowCopy{myVector};
shallowCopy[0] = 10;

return 0;
}

Copy constructor

• We will be revisiting MyVector from last week and improving it. What we will be implementing is a
copy constructor and a copy assignment operator to make a deep copy of another MyVector.

• There is a primary difference between a shallow copy and a deep copy. A shallow copy is very similar to
a reference, in the fact that the if you alter the shallow copy… the original gets altered as well. The
only difference is a shallow copy creates a completely new object, whilst a reference creates an alias to
an existing one.

int main() {
MyVector myVector{1, 2, 3, 4};
MyVector shallowCopy{myVector};
shallowCopy[0] = 10;
myVector[0]; // Returns 10
shallowCopy[0]; // Returns 10
return 0;

}

Copy constructor

• Whilst a deep copy also creates a new object but copies all the data over into a new location that won’t
affect the original variable.

• The goal for the next exercise is the implement your copy constructor and operator assignment
function to create a deep copy of another MyVector

• Hint: the copy constructor will require you to use a loop, whilst the operator function will require you
to use std::swap()

int main() {
MyVector myVector{1, 2, 3, 4};
MyVector deepCopy{myVector};
deepCopy[0] = 10;
myVector[0]; // Returns 1
deepCopy[0]; // Returns 10
return 0;

}

Give “Improving MyVector” a go to implement those
functions!

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList).

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList). Rather than a
contiguous block of memory storing each piece of data like a vector.

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList). Rather than a
contiguous block of memory storing each piece of data like a vector. A singly linked list stores nodes for
each piece of data…

2

10 9

1

14

29

3

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList). Rather than a
contiguous block of memory storing each piece of data like a vector. A singly linked list stores nodes for
each piece of data… each node is then linked together, with the previous node pointing at the next
one.

2

10 9

1

14

29

3

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList). Rather than a
contiguous block of memory storing each piece of data like a vector. A singly linked list stores nodes for
each piece of data… each node is then linked together, with the previous node pointing at the next
one.

• Since each piece of data is stored in its own node, they aren’t stored in a contiguous line. Rather in
random areas on the RAM.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList). Rather than a
contiguous block of memory storing each piece of data like a vector. A singly linked list stores nodes for
each piece of data… each node is then linked together, with the previous node pointing at the next
one.

• Since each piece of data is stored in its own node, they aren’t stored in a contiguous line. Rather in
random areas on the RAM. Because of this, this means singly linked lists are not accessible via an index
like vectors. Which makes element access O(n) time complexity, rather than O(1)

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList). Rather than a
contiguous block of memory storing each piece of data like a vector. A singly linked list stores nodes for
each piece of data… each node is then linked together, with the previous node pointing at the next
one.

• Since each piece of data is stored in its own node, they aren’t stored in a contiguous line. Rather in
random areas on the RAM. Because of this, this means singly linked lists are not accessible via an index
like vectors. Which makes element access O(n) time complexity, rather than O(1)

• Sometimes linked lists will also have a variable for the head, and tail of the linked list. But not always!
Which will allow O(1) time complexity to retrieve either value and insert or delete at either end.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through
the linked lists…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through
the linked lists…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through
the linked lists…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through
the linked lists… And tell the node containing 1 to now point to the node containing 14

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through
the linked lists… And tell the node containing 1 to now point to the node containing 14… then tell the
node containing 14 to point to the node containing 9.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through
the linked lists… And tell the node containing 1 to now point to the node containing 14… then tell the
node containing 14 to point to the node containing 9.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• A common reason why people would choose a linked list over an ArrayList is its ability to insert and
remove elements. Which allows you to remove or insert an element into the linked list, without having
to worry about resizing, unlike an ArrayList.

• Let's say, I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through
the linked lists… And tell the node containing 1 to now point to the node containing 14… then tell the
node containing 14 to point to the node containing 9.

• No need to resize a linked list!

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

10

0x03

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head

Tail

14 0x04

10

0x03

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head

Tail

14 0x04

10

0x03

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• There are always many different types of linked lists.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head

Tail

14 0x04

10

0x03

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• There are always many different types of linked lists.

• Whilst to pop an element from the front, we would need to…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head

Tail

14 0x04

10

0x03

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• There are always many different types of linked lists.

• Whilst to pop an element from the front, we would need to… assign the node the current head is
pointing to as the new head, and…

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

10

0x03

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• Whilst to pop an element from the front, we would need to… assign the node the current head is
pointing to as the new head, and… delete the node that was previously the head of the linked lists

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• There are also many different types of linked lists. Currently, we’ve only been looking at singly linked
lists where the links are only in one direction, but there are also…

2

10Head Tail10

Circular singly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• There are also many different types of linked lists. Currently, we’ve only been looking at singly linked
lists where the links are only in one direction, but there are also… circular singly linked lists, where the
tail connects back to the head…

2

10Head Tail10

Doubly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• There are also many different types of linked lists. Currently, we’ve only been looking at singly linked
lists where the links are only in one direction, but there are also… circular singly linked lists, where the
tail connects back to the head… doubly linked lists where there are links in both directions…

2

10Head Tail10

Circular doubly linked list

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

• There are also many different types of linked lists. Currently, we’ve only been looking at singly linked
lists where the links are only in one direction, but there are also… circular singly linked lists, where the
tail connects back to the head… doubly linked lists where there are links in both directions… and
finally circular doubly linked lists, which have links on both directions including links to the tail and
head

2

10Head Tail10

std::forward_list

• Here is how to declare a forward_list in your C++ code, don’t forget to #include
<forward_list>

• You won’t be using forward_list a lot in this course, and in the problems you will be
solving. But it will give you a good understanding of the data structure as a whole with the
main operations it will contain.

std::forward_list<type> myList{};

std::forward_list

• myList.front(): accesses element at the front of
the list

• myList.front() // returns 4

• myList.push_front(value): pushes value to
the front of the list

• myList.push_front(13)

• myList.push_front(9)

• myList.push_front(10)

• myList.push_front(3): // linked list now
contains {3, 10, 9, 13}

• myList.pop_front(): removes the element at
the front of the list

• myList.pop_front() : // linked list now
contains {10, 9, 13}

Main operations for std::forward_list

std::forward_list<int> myList{};

• myList.insert_after(): inserts an element at a
certain position (Check CppReference for more
detail)

• myList.erase_after(): removes an element at a
certain position (Check CppReference for more
detail)

• myList.size(): returns the size of the list

• myList.size() // returns 3 with {10, 9, 13}

• myList.empty(): empties the list

• myList.empty() // list now contains {}

Give “Singly linked list” a go to try and implement
one yourself!!!

Templating MyVector
• Templating MyVector is a fairly straightforward exercise. So I put more effort into linked

lists this tutorial, since your first assignment will involve them.

• But essentially all that is required is you alter the code we worked on last week for our toy
vector, and change int’s that are related to the data type stored in MyVector to T

Templating MyVector
• Templating MyVector is a fairly straightforward exercise. So I put more effort into linked

lists this tutorial, since your first assignment will involve them.

• But essentially all that is required is you alter the code we worked on last week for our toy
vector, and change int’s that are related to the data type stored in MyVector to T

• For example, this constructor from last week, will turn into…

MyVector::MyVector(std::initializer_list<int> vals) {
size_ = capacity_ = vals.size();
arrayPointer_ = new int[size_];
int i = 0;
for(int x : vals) {
 arrayPointer[i++] = x;
}

}

Templating MyVector
• Templating MyVector is a fairly straightforward exercise. So I put more effort into linked

lists this tutorial, since your first assignment will involve them.

• But essentially all that is required is you alter the code we worked on last week for our toy
vector, and change int’s that are related to the data type stored in MyVector to T

• For example, this constructor from last week, will turn into… this

template <typename T>
MyVector::MyVector(std::initializer_list<T> vals) {

size_ = capacity_ = vals.size();
arrayPointer_ = new T[size_];
int i = 0;
for(T x : vals) {
 arrayPointer[i++] = x;
}

}

Access to google drive

•I will upload slides to the Google Drive after every class

•https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_

ODNJOfgq9-uI

Contact: Thomas.golding@uts.edu.au

https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI
https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI

