
Topics for Today

● Revision
● C++ theory

○ Scopes
○ Ternary operator
○ Iterators
○ Templates

● This week’s lab
○ Templated functions
○ Linked list
○ Templated MyVectors
○ More MyVector functions

Upcoming Dates

March 18 - Assignment 1 Released
March 20 - Census date
April 12 - Assignment 1 Due

Scopes
Variables exist inside scopes, which are indicated with { }

Ternary Operator
The ternary operator is a one line expression that can be

used to replace an in-else clause.

The ternary operator uses a boolean expression, and returns one of two values
according to the result of the bool.

Form:
(boolean) ? trueVal : falseVal

What does O(n^2) mean?
Looping n times within a loop of n iterations

results in n^2 total iterations.

O(n^2) and O(n) solutions to AXS

Worst case: O(n^2)
Best case: O(n^2)
Middle case: O(n^2)

Worst case: O(2*n)
Best case: O(n)
Middle case: Either

Templates
Templates allow us to quickly and easily write code that supports many
datatypes without rewriting any of our code for each new datatype.

It basically allows us to pass the datatype as parameter, instead of rewriting the
function.

First line defines our standin type T, which represents
whatever datatype we want to use, ie int. We can even give
it our own types, if we define its necessary operators i.e. >,*
It doesn’t have to be called T, but it is convention to do so,
especially when dealing with only one template.

How does it work? At compile time the compiler makes a new version of
the function for each type that it gets used with in the code.

Templates
For five minutes try

week 04 Templated Functions

The compiler will make/call this for us

Singly Linked List

Similarly to arrays and vectors, a linked list is a sequence container data structure.
Where arrays and vectors store all their elements in continuous memory, this is not
the case for linked lists.

Linked lists instead use a series of node objects to store their data, and a pointer to
the following node in the sequence.

1 2 3 4

Vector

Size = 4
Capacity = 4
Array = *

1 * 2 *

Linked List

Size = 3
Head = *
Tail = * 3 *

Singly Linked List

Because it is a different data structure, it has different affordances and best use
cases compared to an array/vector.

An array/vector gives O(1) random access (get any element)
A linked list’s random access speed is O(n), proportional to where in the list the
element is

However, adding/removing an element to a linked list anywhere in the sequence is
faster than for a vector.
For a vector it is amortised constant to add to the end. But when we have to allocate
more space this is slow. Removing an element from random access is always slow.

Singly Linked List

Linked lists can be divided into two categories:
Singly linked- each node contains a pointer to the following node only
Doubly linked- each node contains a pointer to the following and previous node

In this activity it is your job to write some functions for a singly linked list.
In the header file you can find the
definition of our node structure. push_front()

display()
front()
empty()
pop_front()
initializer list constructor

data
functions (constructors)

Functions to write:

Iterators
Iterators are objects that allow us another way of iterating through an
array/list like data structure.
An iterator is a pointer to a place in memory within our list. We can increment
and decrement them (traverse the list),
and dereference them to see what is inside.

Iterators
Iterators are objects that allow us another way of iterating through an
array/list like data structure.
An iterator is a pointer to a place in memory within our list. We can increment
and decrement them (traverse the list),
and dereference them to see what is inside.

2 31 4

begin()

iter++

end()

Iterators
Iterators are objects that allow us another way of iterating through an
array/list like data structure.
An iterator is a pointer to a place in memory within our list. We can increment
and decrement them (traverse the list),
and dereference them to see what is inside.

It even works with unordered types, giving us a useful way to
check through their elements

Return to MyVector

The first exercise is to implement a way to deep copy an instance of our vector. To
do this we will use the copy-and-swap idiom. We need two things to achieve this:
1. A copy constructor for our vector class.
2. An operator= overload.

It’s alright we didn’t finish this last week, it’s the same problem but expanded this week.
Vectors use an internal int[] that they handle and rebuild to change lengths for us,

and we are just playing around with writing our own to understand that.

For 1. go to line 30 and define a constructor
using a list initialiser, like we mentioned above.
You can have functionality in the final {}

For 2. go to line 39 and use std::swap()
to swap member variables with the cloned
class instance other.

Return to MyVector

For 1. go to line 30 and define a constructor
using a list initialiser, like we mentioned above.
You can have functionality in the final {}

For 2. go to line 39 and use std::swap()
to swap member variables with the cloned
class instance other.

Return to MyVector
The final exercise for this week is to make a custom vector class using templating.
You need to define the following member functions:
● MyVector<T>::MyVector(int n) constructor given initial size
● MyVector<T>::MyVector(const MyVector<T>& other) from prev
● MyVector<T>::~MyVector() destructor
● MyVector<T>& MyVector<T>::operator=(MyVector<T> other)f.prev
● void MyVector<T>::push_back(T val) adds val to the vector
● void MyVector<T>::pop_back() removes last element

You have member variables:
● int size_, int capacity_, T* arrayPointer_

Remember! You are handling a C-array, of fixed length, and it is your job to write
your functions to seamlessly handle the resizing & rebuilding of this array.

