Topics for Today

e Revision

e (C++theory
o Scopes
o Ternary operator
o Iterators

o Templates

e This week’s lab

o Templated functions
Linked list
Templated MyVectors
More MyVector functions

o O O

Upcoming Dates

March 18 - Assignment 1 Released
March 20 - Census date
April 12 - Assignment 1 Due

void swap(int& a, int& b);
int alpha {2}; // global scope

lint main() {
. std::vector<int> vec{ 1,2,3,4 }; // main function scoped

if (vec[0] == 1)
{
. int doubledFirstElement = 2 * vec[0]; // if statement scoped
alpha += doubledFirstElement;

: // alpha is still in scope because it is global

} // at this } all variables declared within go out of scope

std::cout <« "Doubled first element: " << do st t << 2\n¥;
// so doubledFirstElement is out of scope

int dollars {5};

int cents {75};

swap(dollars, cents);

dollars += temp; // temp in inaccessible because it is out of scope

[void swap(int& a, int& b) {
i int temp = a; // temp is swap function scoped
=b;

= temp;

int one = (true) ? 1 : ©O;
// one =1

bool isSquare {false};
float width = 50.0f;
float height = (isSquare) ? width : 75.0f;

// height = 75.0f

float length = 11.7f;

length = (length > 10.0f) ? 10.6f : length;
// clamps length to not exceed 10.0f.

// if it is not above, keep save value

What does O(n*2) mean?

Looping n times within a loop of n iterations
results in n*2 total iterations.

def HowManyComparisons (arr):
x =20
for i in arr:
for j in arr:
X += 1
print ("Array length: " + str(len(arr)) + ", results in: " + str(x) + " comparisons")

>>> HowManyComparisons (range (10)) >>> 10%*2
Array length: 10, results in: 100 comparisons 100
>>> HowManyComparisons (range (20)) >>>-20%%2
Array length: 20, results in: 400 comparisons 400
>>> HowManyComparisons (range (50)) >>> 50%*2
Array length: 50, results in: 2500 comparisons 2500

std::vector<int> productExceptSelf(const std::vector<int>& nums) { e pr;d“CtExceptse”(“"St SEREEEE ST
! int numZeros = O;
std::vector<int> result(nums.size(), 0); he Proatctuithoitzeros 01
: std::size_t zeroIndex = nums.size();
s 3 = s & S ! // compute
for (std::size_t i = @; i < nums.size(); i+) { B
i int Sum{ 1 }; // 2) product of all non-zeros in nums
for (std::size_t k = e; k < nums.size(); l-(H) { // 3) index of a zero in nums, if there is one
= n 4 for (std::size_t i = 0; i < nums.size(); +i) {
if (1 = k) { 1 if (nums[i] == @) {
; +numZeros;
} zeroIndex = i;

¢ i sum *= nums|[

}

result[i] = sum; ithoutZeros *= nums[il;

return result; // initialise result to be all zero vector

::vector<int> result(nums.size());
if (numZeros
for (std::size_t i = 0; i < nums.size(); +i) {
. result[i] = productWithoutZeros / nums[i];
}
return result;
}
// when numZeros == 1, we just have to correct the
// entry of result corresponding to the © in nums
if (numZeros == 1) {
result[zeroIndex] = productWithoutZeros;
: return result;
}
// when numZeros = 2, result (= all zero vector) is correct answer
return result;

Templates

Templates allow us to quickly and easily write code that supports many
datatypes without rewriting any of our code for each new datatype.

It basically allows us to pass the datatype as parameter, instead of rewriting the
function.

First line defines our standin type T, which represents
whatever datatype we want to use, ie int. We can even give
et it our own types, if we define its necessary operators i.e. >,*

It doesn’t have to be called T, but it is convention to do so,
return b; especially when dealing with only one template.

templatedMax(

- |

How does it work? At compile time the compiler makes a new version of
the function for each type that it gets used with in the code.

template<typename T>

{
return (a > b) ? a : b; int TemplatedMax(int a, int b)

{

return (@ > b) ? a : b;

int main()

{
int max = TemplatedMax<int>(a: 10, b:42);

Singly Linked List

Similarly to arrays and vectors, a linked list is a sequence container data structure.
Where arrays and vectors store all their elements in continuous memory, this is not
the case for linked lists.

Linked lists instead use a series of node objects to store their data, and a pointer to
the following node in the sequence.

Vector Linked List
Size = 4 Size = 3 AT *x | 092 /j
Capacity = 4 Head = *— =
Array = * 1 2 1 314 Tail = * ——— 1 3 | *

Singly Linked List

Because it is a different data structure, it has different affordances and best use
cases compared to an array/vector.

An array/vector gives O(1) random access (get any element)
A linked list's random access speed is O(n), proportional to where in the list the
element is

However, adding/removing an element to a linked list anywhere in the sequence is
faster than for a vector.

For a vector it is amortised constant to add to the end. But when we have to allocate
more space this is slow. Removing an element from random access is always slow.

Singly Linked List

Linked lists can be divided into two categories:
Singly linked- each node contains a pointer to the following node only
Doubly linked- each node contains a pointer to the following and previous node

In this activity it is your job to write some functions for a singly linked list.
In the header file you can find the

s Functions to write:
definition of our node structure. I ——T
struct Node { : I
int data {}; display()
Nodex next = nullptr; data front ()
Node () {} functions (constructors) empty ()
Node(int input_data, Nodex next_node= nullptr) : pop front ()

data {input_data}, next {next_node} {} initializer list constructor

std:: list<int> lis{};
lis.push_back(1);
lis.push_back(2);
lis.push_back(3);
lis.push_back(4);

for (auto iter = lis.begin(); iter = lis.end(); iter+) {
: std::cout << *iter < " ";

}

std::cout << "\n";

// You cannot write the following for a linked list.

for (int i = @; i < lis.size(); iH) {
std::cout <« lis[i] « " »; N

}

// Alternatively

std:: list<int>::iterator iter;

iter = lis.begin();

while (iter % lis.end()) {
std::cout << *iter < " ";
iter+;

std::vector<int> vec{ 1,2,3,4 };

for (auto iter = vec.begin(); iter = vec.end(); +iter) {

. std::cout <« *iter «< " *;

}

std::cout <«< "\n";

// For a vector this is just as good as

for (int i = @; i < vec.size(); i+) {
std::cout << vec[i] «< " ";

}

std::cout << "\n";

234

234

III III

// This is more or less a dictionary
std::unordered_map<int, std::string> numberNames{};
numberNames.insert(std::pair<int, std::string>(1, "one"));
numberNames[2] = "two";

numberNames[3] = "three";

numberNames[40000] = "fourty thousand";

40000: fourty thousand

for (auto iter = numberNames.begin(); iter = numberNames.end(); iter+) {
std::cout << iter—>first << ": " << iter->second << "\n";

}

Return to MyVector

It's alright we didn't finish this last week, it's the same problem but expanded this week.
Vectors use an internal int [] that they handle and rebuild to change lengths for us,
and we are just playing around with writing our own to understand that.

The first exercise is to implement a way to deep copy an instance of our vector. To
do this we will use the copy-and-swap idiom. We need two things to achieve this:
1. A copy constructor for our vector class.

2. Anoperator= overload.

For 1. go to line 30 and define a constructor For 2. go to line 39 and use std: : swap ()
using a list initialiser, like we mentioned above. to swap member variables with the cloned
You can have functionality in the final {} class instance other.

37 // Copy assignment operator

5 1), oy Eeliskraceoer 38 //*x*x For you to implement

)9 [/ /**x*x For you to implement

- 39 MyVector& MyVector::operator=(MyVector other) {
30 MyVector: :MyVector(const MyVector& other) {

40 return xthis;

31 3 41 }

Return to MyVector

'8 [/ Copy Constructor

)9 [/**x* For you to implement

0 MyVector::MyVector (const MyVector& other)

: size_(other.size_), capacity_(other.capacity_)

44 [/ Copy assignment operator
15 //*x*x* For you to implement
16 MyVector& MyVector::operator=(MyVector other) {

std::swap(arrayPointer_, other.arrayPointer_);

32 {

std::swap(size_, other.size_);
std: :swap(capacity_, other.capacity_);
return xthis;

arrayPointer_ = new int[capacity_];
34 for (int i=0; di<size_;i++){
' arrayPointer_[1] = other[1i];

} L)

For 1. go to line 30 and define a constructor For 2. go to line 39 and use std: : swap ()
using a list initialiser, like we mentioned above. to swap member variables with the cloned
You can have functionality in the final {} class instance other.

Return to MyVector

The final exercise for this week is to make a custom vector class using templating.
You need to define the following member functions:
e MyVector<T>::MyVector (int n) constructor given initial size

® MyVector<T>::MyVector (const MyVector<T>& other) from prev
® MyVector<T>::~MyVector () destructor
® MyVector<T>& MyVector<T>::operator=(MyVector<T> other) f.prev
® void MyVector<T>::push back (T val) adds val to the vector
® void MyVector<T>::pop back() removes last element
You have member variables:
® int size , int capacity , T* arrayPointer

Remember! You are handling a C-array, of fixed length, and it is your job to write
your functions to seamlessly handle the resizing & rebuilding of this array.

