
data structures &
Tutorial 3

algorithms

1

97

2 6 9

5115

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

3.14159265358979323846264338327950288419716939937510582097494459
2307816406286208998628034825342117067982148086513282306647093844
6095505822317253594081284811174502841027019385211055596446229489
5493038196442881097566593344612847564823378678316527120190914564
8566923460348610454326648213393607260249141273724587006606315588
1748815209209628292540917153643678925903600113305305488204665213
8414695194151160943305727036575959195309218611738193261179310511
8548074462379962749567351885752724891227938183011949129833673362
4406566430860213949463952247371907021798609437027705392171762931
7675238467481846766940513200056812714526356082778577134275778960
9173637178721468440901224953430146549585371050792279689258923542
0199561121290219608640344181598136297747713099605187072113499999
9837297804995105973173281609631859502445945534690830264252230825
3344685035261931188171010003137838752886587533208381420617177669
1473035982534904287554687311595628638823537875937519577818577805
3217122680661300192787661119590921642019893809525720106548586327

Happy Pi Day!

Burning questions from
last week?

This week’s lab

Today we are levelling up our C++ with
templates, class constructors and
learning about more data structure

 Template

 Memory: Stack vs Hea

 Linked List

 Constructors

This was me at this point
in the course

Templates
Templates are like a

where you

(Similar to Generics in Java, but more powerful)

blueprint
fill in the blank

Write less code
motivation

Templates let you write 
a function that
supports types

single
multiple

Templates

Imagine we are writing
an functionadd

1

2

3

4

5

int int int

int

 a b
 a b

 sum

add

add

(,) {

return + ;

}

= (,);1 2

Templates

But now we want to also
add together...floats

1

2

3

4

5

6

7

8

9

10

11

12

// int implementation

// float implementation

int int int

float float float

int
float

 a b
 a b

 a b
 a b

 sum1
 sum2

add

add

add
add

(,) {

return + ;

}

(,) {

return + ;

}

= (,);

= (,);

1 2
3.14f 2.71f

Templates

And now we want to also
add together...doubles

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

// int implementation

// float implementation

// double implementation

int int int

float float float

double double double

int
float
double

 a b
 a b

 a b
 a b

 a b
 a b

 sum1
 sum2
 sum3

add

add

add

add
add
add

(,) {

return + ;

}

(,) {

return + ;

}

(,) {

return + ;

}

= (,);

= (,);

= (,);

1 2
3.14f 2.71f
1.234 5.678

Templates

And what about...

long, or long long or

unsigned int, etc.

Templates

1

2

3

4

5

6

7

8

9

template typename

int
float
double
unsigned int

 a b
 a b

 sum1
 sum2
 sum3
 sum4

< >

(,) {

return + ;

}

= (,);

= (,);

= (,);

= (,);

T
T T Tadd

add
add
add

add

1 2
3.14f 2.71f
1.234 5.678

10u 20u

Ahh... much better

Templates

1

2

3

4

5

6

7

8

9

template typename

int
float
double
unsigned int

 a b

 a b

 sum1
 sum2
 sum3
 sum4

< >

(,) {

return + ;

}

= (,);

= (,);

= (,);

= (,);

Blank
Blank Blank Blankadd

add
add
add

add

1 2
3.14f 2.71f
1.234 5.678

10u 20u

This would work too!
Usually we just use T

(T stands for type)

Templates

1

2

3

4

5

6

7

8

9

template typename

int int
float float
double double
unsigned int unsigned int

 a b
 a b

 sum1
 sum2
 sum3
 sum4

< >

(,) {

return + ;

}

= < >(,);

= < >(,);

= < >(,);

= < >(,);

T
T T Tadd

add
add
add

add

1 2
3.14f 2.71f
1.234 5.678

10u 20u

And if you want to explicitly specify the
type you can do that like so

Templates

1 std:: < > {};vector int

You’ve actually been using
templates all along

--
>

Templates

Templates are
stupidly OP. We are
only just scratching
the surface here...

Let’s give the first
activity a go

Stack vs Heap

Stack vs Heap

The stack and heap are
both locations in
were we can store data

memory

tl;dr

Variables

Whenever we create a
variable we put

on the
something

stack

tl;dr

new keyword

Whenever we use the  
 keyword we put

 on the
new

something Heap

tl;dr

Dynamic Memory

Whenever we need to
dynamically allocate

memory we need to use the
Heap

tl;dr

Pointers

Whenever we put something
on the we need to

keep track of its
location with a

Heap

pointer

tl;dr

Stack Heap

 Ordered and fas
 Used for variables
and fixed memory

 Unordered and slo
 Used for dynamic memory

Stack Heap

0x0FA

0x41C

0x41C

0x0FA

We keep track of memory on the
using on the

heap
pointers stack

Stack Heap
0x0FA

0x41C

0x41C

0x0FA

Player player1();

player

Data

Stack Heap
0x0FA

0x3BE

0x41C

0x41C

0x0FA

Player * = ();player1 new Player

0x3BE

player

Data

Pointer to a
player object

Stack Heap
0x0FA

0x3BE

0x41C

0x41C

0x0FA

Player * = ();player1 new Player

0x3BE

player

Data

this allocates memory on the
heap and returns a pointer

Stack Heap
0x0FA

0x3BE

0x41C

0x3BE

0x41C

0x0FA

int int size * = new [*];array 2

Array

Data

dynamic size

Stack

vec

Heap

0x3BE

Array

Data

size

Capacity

arrayPointer 0x3BE

6

6

std:: < > { , , , , , };vector vec int 1 2 3 4 5 6

Stack

vec

Heap

0xF4B

Array Datasize

Capacity

arrayPointer 0xF4B

6

6

std:: < > { , , , , , };

. ();
vector vec

vec
int 1 2 3 4 5 6

7push <-- Grows the underlying array

Constructors and

Destructors

Constructors and

Destructors

There are a lot of different
types of constructors you can
create in C++

Today we are learning about
 Standard Constructo
 Destructo
 Copy Constructo
 Copy Assigment

Constructors

Constructors are all the
different ways we can
create a certain clas

 Allocates heap memor
 sets the properties

Destructor is the way we
destroy a clas

 Frees the heap memory

Destructors

Default Constructor

class
public

int

 string name
 health

Player

std

{ 
: 
:: ; 

;

}

Player player
player name
player health

;
. ;
. ;

 // calls the default constructor

 // equals: ""

 // equals: 0

Default Constructor
class
public

int

 string name
 health

  
 name
 health

Player

std

{ 
: 
:: ; 

;

() {
= " "; 
= ; 

}

}

 // next line overrides the default constructor

Player

Unknown
100

Parameterized Constructor
class
public

int

int

 string name
 health

 name playerName
 health playerHealth

Player

std

std string

{ 
: 
:: ; 

;

(:: ,) { 
= ; 
= ; 

}

}

// Parameterized Constructor 
Player playerName playerHealth

Initialization List
class
public

int

int

 string name
 health

 playerName playerHealth

Player

std

std string

{ 
: 
:: ; 

;

(:: ,)
: (), () {}

}

// Constructor using an initialization list 
Player

name health
playerName playerHealth

If your class doesn’t deal with
 this is usually all

you need to do

heap memory

Rule of Three

If your class has a

pointer to something

on the heap

 Destructo

 Copy Constructo

 Copy Assignment Operator
==>

HeapmyVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Destructor

If we use the default destructor on myVector1, the

heap memory well remain on the heap. This is called a

memory leak

HeapmyVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Destructor

We have now lost all references to the heap memory
object, so we can no longer free it.

HeapmyVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Destructor

Instead we first need to call delete on the the array

HeapmyVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Destructor

And then we can destruct the myVector1 object

HeapmyVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Destructor

And then we can destruct the myVector1 object

We simply need to override the default destructor and
in it we delete the heap allocated array

MyVector::~ () {

delete[] ;

}

MyVector
 arrayPointer_

Destructor

HeapmyVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Copy Constructor

Here we have a single instance of our MyVector class.

Notice we have three pieces of data. The size, the

capacity and the array pointer

myVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

myVector2

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Heap

Copy Constructor

If we make a copy using the
 copy constructor all the
 get directly copied.

(Remember that a is just a value)

default
values

pointer

myVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

myVector2

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

1 2 3 4 5 6

0x0A

Heap

Copy Constructor

This is called a
 copyshallow

We are only copying the class

properties, and not the data those

properties point to

HeapmyVector1

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0A

myVector2

int

int

int*

size_

capacity_

arrayPointer_

6

6

0x0B

1 2 3 4 5 6

0x0A

1 2 3 4 5 6

0x0B

But this is what we really want. We want to copy the

 on the heap!underlying array

has a pointer

to something

on the heap

Has

to things on

the heap

no pointers

MyVector:: (&)
{new [.]},

{ . },

{ . } {

for (= ; < ; ++) {

[] = . [];

}

}

MyVector const
int

int

 MyVector other

 : arrayPointer_ other size_
 size_ other size_
 capacity_ other capacity_

arrayPointer_ other arrayPointer_

 i i size_ i
 i i

// Deep copy
0

Copy Constructor

MyVector:: (&)
{ . > ? new [.] : nullptr},

{ . },

{ . } {  

for (= ; < ; ++) {

[] = . [];

}

}

MyVector const
int

int

 MyVector other

 : arrayPointer_ other size_ other size_
 size_ other size_
 capacity_ other capacity_

arrayPointer_ other arrayPointer_

 i i size_ i
 i i

0

0
// Deep copy

Copy Constructor (improved)

MyVector MyVector = MyVector

std
std
std

& other

 arrayPointer_ other arrayPointer_
 size_ other size_
 capacity_ other capacity_

:: () {

:: (, .);

:: (, .);

:: (, .);

return *this;

}

operator
 // other is passed by VALUE

 // So it is copied (its copy constructor is called)

swap
swap
swap

Copy Assignment

Heap

other

myVector

int

int

int*

int

int

int*

size_

capacity_

arrayPointer_

size_

capacity_

arrayPointer_

0x0B

0x0A

6

4

6

4 1 2 3 4

0x0A

3 1 4 1 5 9

0x0B

So we first swap all the values of the variables

Heap

other

myVector

int

int

int*

int

int

int*

size_

capacity_

arrayPointer_

size_

capacity_

arrayPointer_

0x0B

0x0A

6

4

6

4 1 2 3 4

0x0A

3 1 4 1 5 9

0x0B

So we first swap all the values of the variables

Heap

other

myVector

int

int

int*

int

int

int*

size_

capacity_

arrayPointer_

size_

capacity_

arrayPointer_

0x0B

0x0A

6

4

6

4

1 2 3 4

0x0A

3 1 4 1 5 9

0x0B

So we first swap all the values of the variables

Heap

other

myVector

int

int

int*

int

int

int*

size_

capacity_

arrayPointer_

size_

capacity_

arrayPointer_ 0x0B

0x0A

6

4

6

4

1 2 3 4

0x0A

3 1 4 1 5 9

0x0B

So we first swap all the values of the variables

Then the destructor is called on other

MyVector MyVector = MyVector
std
std
std

& other
 arrayPointer_ other arrayPointer_
 size_ other size_
 capacity_ other capacity_

:: () {

:: (, .);

:: (, .);

:: (, .);

return * ;

}

operator
swap
swap
swap

this
// After this line other goes out of scope

 // so its destructor is called

Heap

other

myVector

int

int

int*

int

int

int*

size_

capacity_

arrayPointer_

size_

capacity_

arrayPointer_ 0x0B

0x0A

6

4

6

4

1 2 3 4

0x0A

3 1 4 1 5 9

0x0B

Then the destructor is called on other

Heap

other

myVector

int

int

int*

int

int

int*

size_

capacity_

arrayPointer_

size_

capacity_

arrayPointer_ 0x0B

0x0A

6

4

6

4

1 2 3 4

0x0A

3 1 4 1 5 9

0x0B

Then the destructor is called on other

HeapmyVector

int

int

int*

int

int

int*

size_

capacity_

arrayPointer_ 0x0B

6

6 1 2 3 4

0x0A

3 1 4 1 5 9

0x0B

Then the destructor is called on other

Rule of Three

If your class has a

pointer to something

on the heap

Implementing 1 & 2

makes implementing 3 pretty easy

 Destructo

 Copy Constructo

 Copy Assignment Operator
==>

Let’s try implement the
constructors in the

activity

Linked List

Linked List

5

data next

Node

Linked List

5

data next
struct
int

*

Node

Node

T Node

{

{};

* = nullptr;

(){}

(, = nullptr) :

{ }, { } {}

}

Linked List

5

data
struct
int

*

 data
 next

 data input_data next next_node

Node

Node

T Node

{

{};

* = nullptr;

(){}

(, = nullptr) :

{ }, { } {}

}

Linked List

5

next
struct
int

*

 data
 next

 data input_data next next_node

Node

Node

T Node

{

{};

* = nullptr;

(){}

(, = nullptr) :

{ }, { } {}

}

Linked List

5

data next
struct
int

int *

 data
 next

 data input_data next next_node

Node

Node

Node

{

{};

* = nullptr;

(){}

(, = nullptr) :

{ }, { } {}

Node
Node}

Linked List

5

data next
struct
int

int *

 data
 next

 data input_data next next_node

Node

Node

Node

{

{};

* = nullptr;

(){}

(, = nullptr) :

{ }, { } {}

Node
Node input_data next_node

}

Linked List

5

data next
struct

*

 data
 next

 data input_data next next_node

Node
T
Node

T Node

{

{};

* = nullptr;

(){}

(, = nullptr) :

{ }, { } {}

Node
Node input_data next_node

}

template typename < >T

Linked List

4

Linked List

4 11

head

To keep track of the start of our list we define

a variable which points to the first nodehead

Linked List

4 11

head tail

Optionally we can also define a variable

which points to the end of our list

tail

Linked List

4 11

push_front()3

head tail

Linked lists allow us to quickly push to the

front of the list

Linked List

4 11

3

head tail

push_front()3

First we need to create a new node

Linked List

4 11

3

head tail

push_front()3

Then we set the next pointer to

the current head

Linked List

4 113

head tail

Finally we update the to point to the

node we just added

head

push_front()3

Linked List

4 113

head tail

push_back()5

If we are keeping track of the Linked lists allow
us to quickly push to the back of the list

tail

Linked List

4 1

5

13

head tail

push_back()5

First we create a new node

Linked List

4 1

5

13

head tail

push_back()5

Then we set the next pointer of the

 to the new node we addedtail

Linked List

4 1 513

head tail

push_back()5

Finally we update the to point to the

node we just added

tail

Linked List

4 1 513

head tail

This brings us to a pretty big downside of linked lists

which is you cannot randomly access elements

Linked List

4 1 513

head tail

Suppose I want to access the data at the 3rd index

Linked List

I need to start all the way at the head and keep

following the next pointer

4 1 513

head tail

Linked List

O(n)

4 1 513

head tail

Linked List

4 1 513

head

So if we do not keep track of the

then we need to first traverse the whole list

before we can add to the end of the list

tail

Linked List

4 1 513

head

So how do we destruct a linked list?

Linked List

4 1 513

head

current

We start from the front and delete each node

Linked List

4 1 513

head

current

temp

But we need to keep track of the next node before we

delete the current node

Linked List

4 1 513

head

currenttemp

But we need to keep track of the next node before we

delete the current node

Linked List

4 1 51

current

But we need to keep track of the next node before we

delete the current node

Linked List

4 1 51

current
temp

But we need to keep track of the next node before we

delete the current node

Linked List

4 1 51

currenttemp

But we need to keep track of the next node before we

delete the current node

Linked List

4 1 5

current

But we need to keep track of the next node before we

delete the current node

Linked List

4 1 5

current
temp

But we need to keep track of the next node before we

delete the current node

Linked List

4 1 5

currenttemp

But we need to keep track of the next node before we

delete the current node

Linked List

1 5

current

But we need to keep track of the next node before we

delete the current node

Linked List

1 5

current
temp

But we need to keep track of the next node before we

delete the current node

Linked List

1 5

currenttemp

But we need to keep track of the next node before we

delete the current node

Linked List

5

current

But we need to keep track of the next node before we

delete the current node

Linked List

If there is time have a play with
the activity

Otherwise thank you all for coming

	Slide 01
	Slide 02
	Slide 03
	Slide 04
	Slide 05
	Slide 06
	Slide 07
	Slide 08
	Slide 09
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

