data structures & algorithms
Tutorial 3

Happy P1i Day!

Burning questions from
Last week?

This week’'s 1lab

Today we are levelling up our C+ with
templates, class constructors and
learning about more data structures

 Templates

i?%/ h « Memory: Stack vs Heap
— Linked Lists

This was me at this point

in the course ¢ COnStr‘UCtOPS

: :I-‘.H.rr

Templates

Templates are like a blueprint
where you fill in the blank

(Similar to Generics in Java, but more powerful)

motivation

Write less code

Templates let you write
a single function that
supports multiple types

Templates

int add(int a, int b) {

. .« . return a + b;
Imagine we are writing

an add function

}

int sum = add(1, 2);

Templates

int add(int a, int b) {
return a + b;

}.

But now we want to also
add floats togethep float add(float a, float b) {

return a + b;

int suml = add(1, 2):
float sum2 = add(3.14f, 2.71f);

int add(int a, int b) {

Templates return a + b;
}.

float add(float a, float b) {
return a + b;

And now we want to also)
add doubles together...

double add(double a, double b) {
return a + b;

}.

int suml = add(1, 2);
float sum2 = add(3.14f, 2.71f):
double sum3d = add(1.234, 5.678);

Templates

| SEEDUPLICATED l}llllli

And what about...
Long, or Long Llong onr
unsigned int, etc. &

Templates

template <typename T>

T add(T a, T b) {
Ahh... much better return a + b

int suml = add(1, 2);

float sum2 = add(3.14f, 2.71f);
double sum3 = add(1.234, 5.678);
unsigned int sum4 = add(10u, 20u);

Templates

template <typename Blank>
Blank add(Blank a, Blank b) {

' |
This would work too! return a + b:

Usually we just use T }

(T stands for type) int suml = add(1, 2);

float sum2 = add(3.14f, 2.71f);
double sum3 = add(1.234, 5.678);
unsigned int sum4 = add(10u, 20u);

Templates

And 1f you want to explicitly specify the
type you can do that 1like so

template <typename T>
T add(T a, T b) {
return a + b;

int suml = add<int>(1, 2);

float sum2 = add<float>(3.14f, 2.71f);

double sum3 = add<double>(1.234, 5.678);
unsigned int sum4 = add<unsigned int>(10u, 20u);

Templates

std::vector<int> {}:

You've actually been using T
templates all along ¥

Templates

Oops!

Templates are
stupidly OP. We are

only just scratching
the surface here...

L |
b
h _T—l".-; .

| just invented the most advanced

computer language in the world
.. by accident.

Let’'s give the first
activity a go

Stack vs Heap

\ L,
IIIIIHEIISI'I'YLI'IIOFESSIIIH
EXPLAINING STACKI

AND HEAP MEMORY ALLOCATION

Stack vs Heap

The stack and heap are
both locations 1n memory
were we can store data

tl;dr

Variables

Whenever we create a
variable we put something
on the stack

tl;dr

new keywonrd

Whenever we use the
new keyword we put
something on the Heap

Dynamic Memory

Whenever we need to
dynamically allocate
memory we need to use the
Heap

Pointers

Whenever we put something
on the Heap we need to
keep track of 1ts
location with a pointer

Stack Heap

S
-

]

.

 Ordered and fast Unordered and slow
« Used for variables Used for dynamic memory
and fixed memory

Stack Heap

OXOFA

OXOFA [:::::::::::]

Ox41C

Ox41C [::::::]

We keep track of memory on the heap
using pointers on the stack

Heap

OXOFA

-

Ox41C

|

Player playerl():

Heap

OXOFA

Ox3BE

Ox41C player

Player * playerl = new Player();
—
Pointer to a

player object

Heap

OXOFA

Ox3BE

Ox41C player

Player * playerl = new Player():
W_J
this allocates memory on the

heap and returns a polnter

Heap

OXOFA

Ox3BE

Ox41C Array

int * array = new int[size x 2];

%_J
dynamlc size

Stack Heap

size 6

Capacity 6

arrayPointer Ox3BE

std::vector<int> vec {1, 2, 3, 4, 5, 6}:

Stack Heap

OxF4B

size 6 Array Data

Capacity 6

arrayPointer OxF4B

std::vector<int> vec {1, 2, 3, 4, 5, 6};:
vec.push(7); «— Grows the underlying array

Constructors and
Destructors

Constructors and
Destructors

SOMEONE ﬂllllS
ANEWCLASS'INCE=
IMPLEMENTS Ny
*unusmumn AND DESTRUCTOR

There are a lot of different
types of constructors you can

: IMPLEMENTS CORY;
create 1n C++ AND MOVEZCONSTRUCTOR
Today we are learning about: OVERLOADS COPY.

* Standard Constructor AND MOVEEASSIGNMENT

 Destructonr
 Copy Constructor
« Copy Assigment

Constructors

Constructors are all the
different ways we can
create a certain class

* ALLocates heap memory
« sets the properties

Destructors

Destructor 1s the way we
destroy a class

* Frees the heap memory

Default Constructor

class Player {

public:
std::string name;
1nt health;

1

Player player;
player.name;
player.health;

Default Constructor

class Player {
public:
std::string name;
1nt health;

Player() {
name = "Unknown";
health = 100;

Parameterized Constructor

class Player {
public:
std::string name;
1nt health;

Player(std::string playerName, int playerHealth) A
name = playerName;
health = playerHealth;

Initialization List

class Player {
public:
std::string name;
1nt health;

Player(std::string playerName, int playerHealth)
. name(playerName), health(playerHealth) {}

If your class doesn’'t deal with
heap memory this 1s usually all
you need to do

Rule of Three

If your class has a 1. Destructor
poilnter to something 2. Copy Constructor
on the heap 3. Copy Assignment Operator

Destructonr

myVectorl . Heap

int size_ 6 E
int capacity_ 6 j 1 2 3 4 5 6
int* arrayPointer_ 0OxO0A " OxOA

It we use the default destructor on myVectorl, the
heap memory well remaln on the heap. Thilis 1s called a
memory leak

Destructonr

We have now Lost all references to the heap memory
object, so we can no longer free 1t.

Destructonr

myVectorl . Heap

int size_ 6 E
int capacity_ 6 j 1 2 3 4 5 6
int* arrayPointer_ 0OxO0A " OxOA

Instead we first need to call delete on the the array

Destructonr

myVectorl . Heap
int size_ 6
int capacity_ 6

int* arrayPolnter_ 0OxO0A

And then we can destruct the myVectorl object

Destructonr

And then we can destruct the myVectorl object

Destructonr

MyVector:: ~MyVector() 4
deletel[] arrayPointer_;

}.

We simply need to override the default destructor and
1n 1t we delete the heap allocated array

Copy Constructor

myVectorl . Heap

int size_ 6 E
int capacity_ 6 j 1 2 3 4 5 6
int* arrayPointer_ 0OxO0A . OxOA

Here we have a single instance of our MyVector class.
Notice we have three pileces of data. The size, the
capaclity and the array polnter

Copy Constructor

myVectorl Heap
int size_ 6
int capacity_ 6

int* arrayPolnter_ 0OxO0A

myVector?2 :

Y It we make a copy using the
int size_ 6 default copy constructor all the
int capacity_ 6 values get directly copiled.

int* arrayPolnter Ox0OA : .
Y - (Remember that a pointer is just a value)

Copy Constructor

int
int

1nt*

int
int

1nt*

myVectorl

size_
capacity_

arrayPoilnter_

myVector2

size_
capacity_

arrayPoilnter_

6
6
Ox0OA

6
6
Ox0OA

This 1s called a
shallow copy

We are only copyling the class
properties, and not the data those
properties polnt to

But this 1s what we really want. We want to copy the
underlying array on the heap!

int* arrayPolnter_ 0x0OB

myVectorl . Heap 5
int size_ 6 E E
int capacity_ 6 j 1 2 3 4 5 6
int* arrayPointer_ 0Ox0A C axOA E

myVector2 5 5
int size_ 6 : E
int capacity_ 6 E E

Has no pointers has a polnter
to things on to somethilng
the heap on the heap

Copy Constructor

MyVector ::MyVector(const MyVector& other)
. arrayPointer_ {new int[other.size_]},
size_ q{other.size_},
capacity_ {other.capacity_} 1

for (int i = 0; i < size_; +1i) {
arrayPointer_[1] = other.arrayPointer_[i];

}.

Copy Constructor (improved)

MyVector ::MyVector(const MyVector& other)
. arrayPointer_ {other.size_ > 0 ? new int[other.size_] : nullptr},
size_ {other.size_},
capacity_ q{other.capacity_} 1

for (int i = 0; i < size_; +1i) {
arrayPointer_[1] = other.arrayPointer_[1i];

}.

Copy Assignment

MyVector& MyVector ::operator=(MyVector other) A

std:: swap(arrayPointer_, other.arrayPointer_);
std::swap(size_, other.size_);
std::swap(capacity_, other.capacity_);

return *this:

So we first swap all the values of the variables

myVector . Heap
int size_ 4 E
int capacity_ 4 I_‘ﬁ 12 | 35 | 4
int* arrayPolnter_ 0xO0A E Ox0A
other
int size_ 6
int capacity_ 6

int* arrayPolnter_ 0x0OB

So we first swap all the values of the variables

myVector . Heap
int size_ 6 E
int capacity_ 4 I_‘ﬁ 12 | 35 | 4
int* arrayPolnter_ 0xO0A E Ox0A
other
int size_ 4

int capacity_ 6

int* arrayPolnter_ 0x0OB

So we first swap all the values of the variables

myVector . Heap
int size_ 6 E
int capacity_ 6 I_‘ﬁ 1123 | 4
int* arrayPolnter_ 0xO0A E Ox0A
other
int size_ 4

int capacity_ 4

int* arrayPolnter_ 0x0OB

So we first swap all the values of the variables

myVector . Heap 5

int size_ 6

int capacity_ 6

int* arrayPolnter_ 0x0OB

other
int size_ 4
int capacity_ 4

int* arrayPolnter_ 0OxO0A

Then the destructor is called on other

MyVector& MyVector::operator=(MyVector other) {
std::swap(arrayPointer_, other.arrayPointer_);
std::swap(size_, other.size_);
std::swap(capacity_, other.capacity_);
return *this:

int
int

1nt*

int
int

int*

Then the destructor

myVector

size_
capacity_
arrayPointer_

other

size_
capacity_

arrayPoilnter_

6
6
Ox0OB

4
4
Ox0OA

1s called on other

int
int

1nt*

int
int

int*

Then the destructor

myVector

size_
capacity_
arrayPointer_

other

size_
capacity_

arrayPoilnter_

6
6
Ox0OB

4
4
Ox0OA

1s called on other

Then the destructor is called on other

myVector . Heap
int size_ 6
int capacity_ 6

int* arrayPolnter_ 0x0OB

Rule of Three

If your class has a 1. Destructor
polnter to something 2. Copy Constructor
on the heap 3. Copy Assignment Operator

Implementing 1 & 2
makes 1mplementing 3 pretty easy

Let’s try 1mplement the
constructors 1n the
activity

Linked List

£

By
| N~

K ho' K
| Know a guyé% onws a guy

Linked List

data next

5]

Node

Linked List

data next
struct Node {

| 5]

Linked List

data
struct Node {

int data 1};
1

Linked List

next
struct Node {

int data 1};
Node*x next = nullptr;

}

Linked List

data next
struct Node {

int data 1};
Node*x next = nullptr;

Node () {}
}.

Linked List

data next
struct Node {

int data 1};
Node*x next = nullptr;

Node (){}
Node(int input_data, Node* next_node= nullptr)

data {input_data}, next {next_node} {}

Linked List

template <typename 1> data next
struct Node {

T data {}:
Node*x next nullptr;

Node () {}
Node(T input_data, Node* next_node= nullptr)

data {input_data}, next {next_node} {}

Linked List

Linked List

head

To keep track of the start of our list we define
a varlable head which points to the first node

Linked List

head tall

Optionally we can also define a variable tail
which points to the end of our 1list

Linked List

head tall

push_front(3)

Linked lists allow us to quickly push to the
front of the 1list

Linked List

head tall

push_front(3)

First we need to create a new node

Linked List

head tall

push_front(3)

Then we set the next pointer to
the current head

Linked List

head tall

push_front(3)

Finally we update the head to point to the
node we just added

Linked List

head tall

push_back(5)

If we are keeping track of the tail Linked 1lists allow
us to quickly push to the back of the 1l1ist

Linked List

head tall

push_back(5)

First we create a new node

Linked List

head tall

push_back(5)

Then we set the next poilnter of the
tall to the new node we added

Linked List

head tail

push_back(5)

Finally we update the talil to point to the
node we just added

Linked List

head tail

This brings us to a pretty big downside of linked 1lists
which 1s you cannot randomly access elements

Linked List

head tail

Suppose I want to access the data at the 3rd 1ndex

Linked List

head tail

I need to start all the way at the head and keep
following the next polnter

Linked List

head tail

0(n)

Linked List

head

So 1f we do not keep track of the tail
then we need to first traverse the whole 1list
before we can add to the end of the 1list

Linked List

head

So how do we destruct a linked 1list?

Linked List

head

3| &—4—— 1| &e—4— 4 | e4—3 1 | &e——— 5

current

We start from the front and delete each node

Linked List

head

3| &—4—— 1| &e—4— 4 | e4—3 1 | &e——— 5

current
temp

But we need to keep track of the next node before we
delete the current node

Linked List

head

3| &——— 1| &e—— 4 | e—4—3 1 | &e——— 5

temp current

But we need to keep track of the next node before we
delete the current node

Linked List

1 | &—/— 4 | e4— 1 | e—— 5

current

But we need to keep track of the next node before we
delete the current node

Linked List

1 | &—/— 4 | e4— 1 | e—— 5

current
temp

But we need to keep track of the next node before we
delete the current node

Linked List

1 | &—— 4 | e—&— 1 | e—— 5

temp current

But we need to keep track of the next node before we
delete the current node

Linked List

4 — 1 —/—— b

current

But we need to keep track of the next node before we
delete the current node

Linked List

4 — 1 —/—— b

current
temp

But we need to keep track of the next node before we
delete the current node

Linked List

4 — 1] —/—— b

temp current

But we need to keep track of the next node before we
delete the current node

Linked List

1 | &1— 5

current

But we need to keep track of the next node before we
delete the current node

Linked List

1 | &1— 5

current
temp

But we need to keep track of the next node before we
delete the current node

Linked List

—

5

temp

current

But we need to keep track of the next node before we

delete the current node

Linked List

5

current

But we need to keep track of the next node before we
delete the current node

Linked List

If there 1s time have a play with
the activity

Otherwise thank you all for coming

	Slide 01
	Slide 02
	Slide 03
	Slide 04
	Slide 05
	Slide 06
	Slide 07
	Slide 08
	Slide 09
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

