Analysis of
Algorithms

Contains Duplicate

Leetcode 217 (easy, Blind/5): Contains duplicate
Given an array of " numbers, determine if any value appears at least twice.

Last time we saw an algorithm for this problem using two for loops.
We argued that this was not a very efficient solution.

Let's see now how we can claim this more precisely.

Double For Loop

bool containsDuplicate(const std::vector<int>& arr) {
for(int 1 = 0; 1 < arr.size(); ++i) {
for(int j = 0; j < i; ++3) {
if(arr[i] == arr[]]) {

return true;

}

return false;

https://godbolt.org/z/fvo5GjE%e

Say that the size of arr is n. How many operations does this algorithm
take!?

bool containsDuplicate(const std::vector<int>& arr) {
for(int 1 = 0; 1 < arr.size(); ++1i) {
for(int j = 0; j < i; ++3) {
if(arr[i] == arr[]]) {

return true;

}
}

return falsed

}

Let's assume there is no duplicate, so we have to finish the outer for loop.

value of 7 | # comparisons in inner loop

bool containsDuplicate(const std::vector<int>& arr) {
for(int 1 = 0; 1 < arr.size(); ++1i) {
for(int j = 0; j < 1i; ++3j) {
if(arr[i] == arr[]]) {

return true;

}

}

return falsed

value of 7 | # comparisons in inner loop

Total number of comparisons is

14+42434+---+(n—3)+(n—2)+ (n— 1)

Total number of comparisons is

14+24+34+---+(n—-3)+(n—2)+ (n—1)

Total number of comparisons is

1+2434+---+(n—3)+(n—2)+ (n—1)

Total number of comparisons is
14+24+34+---+(n—3)+(n—2)+ (n—1)

If n— 1 iseven

1 2 3 (n—1)/2

+ o+ +
n — 1 n — 2 n — 3 (n+1)/2

Then we have (n — 1)/2 pairs that sum to 7. The sum is
(n —1)n
2

Total number of comparisons is

14+24+34+---+(n—3)+(n—2)+ (n—1)

== If n— 1 is odd

1 2 3 (n—2)/2
+ + + o+ + + n/2

n—1 n — 2 n—3J3 (n+2)/2

Conclusion

n—1)n
142434+ (n=3)+(n-2)+n—1) = :)
2
Our double for loop makes roughly o comparisons.

Now we have an analytical benchmark to compare against when looking
at other algorithms for Contains Duplicate.

Big Oh Notation

Simplifying Running Times

We saw that our double for loop algorithm for Contains Duplicate on
an array of size 7 made (n — 1)n/2 comparisons when there was no
duplicate.

But can we really use this level of precision!?
* How much time does a comparison take!

* To truly predict running time we would need details of the
processor, memory layout, caching strategy, etc.

* And this analysis would have to be done for each computing
platform.

Big Oh Motivation

Can we run the double for loop algorithm for contains duplicate on an
array with a million elements?

Big Oh notation gives a "back of the envelope” way to answer these
questions.

It talks about how complexity of an algorithm grows as a function of
the input size.

We can use it to broadly classify algorithms by running time or memory
usage.

Simplifying Running Times

The level of slack we typically use in analysis of algorithms is “up to
constant factors”.

Example: n2/2 and n° are the same up to a multiplicative constant factor.

This approach is more robust to particular details of the implementation
and hardware being used.

This lets us classify algorithms in broad categories, e.g. about 7 steps versus
about 1~ steps.

Simpliftying Our Jobs

lgnoring constant factors makes analyzing the running times of algorithms
easier.

bool containsDuplicate(const std::vector<int>& arr) {
for(int 1 = 0; 1 < arr.size(); ++i) {
for(int 3 = 0; j < i; ++3j) {
if(arr[i] == arr[]]) {
return true;
}
}

}

return falsed

It is easier to see this algorithm makes at most n* comparisons.

Factor of 2

Of course if one algorithm is twice as fast as another it can make a huge
difference in practice.

But for this level of optimization one is better off benchmarking rather
than computing detailed constants of the number of steps in pseudocode.

600000

500000

400000

300000

200000

100000

Small Size Effects

200

benchmarkDoubleFor

B benchmarkUnorderedSet

400 600 800

ratio (CPU time / Noop time)
Lower is faster

Which algorithm is better?

1000

1200

1400000000

1200000000

1000000000

800000000

600000000

400000000

200000000

Small Size Effects

.——.—————-.————_—'____.

10000

B benchmarkUnorderedSet

20000 30000 40000

ratio (CPU time / Noop time)
Lower is faster

How about now?

benchmarkDoubleFor

50000

60000

70000

Large Problem bize

The first simplification of big Oh notation is that it ignores constant factors.

The second is that it is only concerned with how a function grows as
the input becomes large.

VVe want to say the blue line grows B s 1 rnanoar
more slowly than the yellow one.

1000000000
800000000
600000000
400000000

200000000

0 L= — -
0 10000 20000 30000 40000 50000

ratio (CPU time / Noop time)
Lower is faster

60000

70000

Definition
Let f be a function which maps a natural number to a non-negative real

number.

Think about the input as a problem size and the output as a complexity
measure, like running time or memory usage.

Formally,we say f :{0,1,2,3,...} = R>g.

Definition

For f,g:{0,1,2,3,...} = R>g wesaythat f(n) =0(g(n))

if and only if there are positive constants ¢ and 7g such that

f(n) <c-g(n)

forall n > ng.

Example

For f,g:{0,1,2,3,...} = R>g wesaythat f(n) =0(g(n))

if and only if there are positive constants ¢ and 7g such that

f(n) <c-g(n)

forall n > ng.

e 2n = O(n)

Take the constant ¢ to be 2 and 7o to be O.

Example
For f,g:{0,1,2,3,...} = R>g wesaythat f(n) =0(g(n))

if and only if there are positive constants ¢ and 7o such that

f(n) <c-g(n)

forall n > ng.
Example: 5n = O(n?)

Take the constant ¢ to be 5 and 9 to be 0.

For f,9:{0,1,2,3,...} = R>g wesaythat f(n) =0(g(n))

if and only if there are positive constants ¢ and 7¢ such that

f(n) <c-g(n)

forall n > ng.

Example: 5n = O(n~) :

20 |

!.-' ’ —

4 6 8 10

Or take the constant ¢ to be | and g to be 6.

Non-Example
For f,g:{0,1,2,3,...} = R>g wesaythat f(n) =0(g(n))

if and only if there are positive constants ¢ and 7o such that

f(n) <c-g(n)

forall n > ng.
Non-Example: n° # O(n?)

n3>cn2 for n > c.

Suificient Condition

When trying to figure out if f(n) = O(g(n)) look at the ratio as
becomes large. If there is a constant 72 such that

. f(n)
him
n—s00 g(n) = c

then f(n) = 0(g(n)).

Example

We can use the sufficient condition to show that if a < b then

n® = O(n’)
Look at the limit of the ratio
, n , 1
him — = im
n—oo M n— 0O nb—a

= 0

Big Oh 1s not enough

Big Oh is just an upper bound. There is no implication that it is the best
upper bound possible.

"The running time of the double for loop contains duplicate algorithm

is O(n?’) "

This is a true statement.

To compare algorithms we also want to lower bound their running time.

Unfortunately, people have occasionally been using the O-~notation for
lower bounds, for example when they'feject a particular sorting method
"because its running time is O(ne) ."" I have seen instances of this in
print quite often, and finally it has prompted me to sit down and write

a Letter to the Editor about the situation.

Donald E. Knuth, "Big Omicron and Big Omega and Big Theta", 1976.

In this paper Knuth introduced the Big Omega notation to computer
science that we now use to talk about lower bounds on the running
time of algorithmes.

Big Omega

For f,g:{0,1,2,3,...} = R>g wesaythat f(n) = Q(g(n))

if and only if there are positive constants ¢ and 7g such that

f(n) >c-g(n)

forall n > ng.

Alternatively, f(n) = Q(g(n)) ifand onlyif g(n) = O(f(n)).

Example Usage

We saw that the double for loop contains duplicate algorithm makes
n(n — 1)/2 comparisons when the input does not have a duplicate.

"The worst-case number of comparisons is n(n — 1)/2 = Q(n")"

VWorst-case means there exists an input which makes the algorithm have
this number of comparisons (or running time).

n(n—1) . :

" for n > 2.
2 4

Example Usage

We can also say the worst-case running time of the double for loop
contains duplicate algorithm is O(nQ) :

For every input the number of steps is O(n?) .

We have matching upper and lower bounds on the running time of this
algorithm...this is a job for Big Theta.

Big Theta

For f,g:{0,1,2,3,...} = R>g wesaythat f(n) = 0(g(n))

if and only if there are positive constants C1,C2 and 71 such that

c1-g(n) < f(n) <cz-g(n)

forall n > ng.

Alternatively, f(n) = ©(g(n)) ifand only if f(n) = O(g(n)) and
f(n) = Q(g(n)).

Example Usage

The worst-case running time of double for loop contains duplicate is @(n2) .

For every input it runs in O(nQ) steps.

There exists an input for which it takes Q(nz) steps.

Caution

Examples of incorrect usage of big Oh abound.

Knuth's observation from 1976 still holds today: many people use big Oh
when they mean big Omega or big Theta.

"In industry, people seem to have merged () and © together. Industry's
meaning of big () is closer to what academics mean by ©, in that it would
be seen as incorrect to describe printing an array as O(n*) ."

Gayle Laakmann McDowell, "Cracking the Coding Interview"

Be a force for good, and use the terms properly!

Common Functions

Common Functions

Here are the most common functions you will see in the analysis of algorithmes.

O(1) — assigning a word in memory, arithmetic operation on words.

©(log n) — finding an element in a sorted array of size 7.

n) — iterate through an array of size n .

(nlogn) — sorting an array of size n with mergesort.
(— sorting an array of size n with insertion sort.

n°) — solving n linear equations in 7 vars with Gaussian elim.

— enumerating all subsets of an n element set.

Big Oh vs. Problem Size

n O(1) O(logn) | O(n) O(nlogn) O(n?)
10 1 ns 3 ns 10 ns 30 ns
100 1 ns 6 ns 600 ns
1,000 1 ns 10 ns
10,000 1 ns 13 ns
100,000 1 ns 16 ns
1,000,000 1 ns 20 ns

one operation per nanosecond

O(n°)

Time Estimates

om) Omlgm o) O NN NNOEN

1 s 1 s 1 s 1 s 2 us 1ps
10 1ps 3 s 10 ps 34 us 100 ps 1 ms 1ms
100 1ps 6 us
1,000 1ps 9 us
10,000 1ps 13 ps
100,000 1us 16 ps
1,000,000 1us

* let’s assume our single operation takes 1 ps

Cppcon 2021: https://www.youtube.com/watch!?v=AY2FgpDCBGs

https://www.youtube.com/watch?v=AY2FqpDCBGs

Intro to dSorting

Sorting

A sequence agp,a1,...,0,—1 is sorted in ascending order if

Example: 1,2,3,5,7,7,8

A sequence agp,Q1,...,0,—1 is sorted in descending order if

CLQZCL1>--->CLn_1

Example: 8,7,7,5,3,2,1

Sorting Algorithm

A sorting algorithm takes an input array and puts it in sorted order (either
ascending or descending).

We can sort any objects where a comparison function < is defined.
The default comparison for strings is by alphabetical order.

For pairs of numbers, by default (a,b) < (¢, d) if and only if

a<cora=candb<d

Sorting in C++

// Example 1: Sort vector of integers in ascending order
std: :vector<int> intVec {3,1,7,2,5,8,7)};
std: :sort(intVec.begin(), intVec.end());

Now 1ntVec is sorted in ascending order.

// Example 4: Sort in descending order
std::sort(intVec.begin(), intVec.end(), std::greater<>());

This sorts in descending order.

These and more examples at Godbolt: https://godbolt.org/z/aossVV/|ET

Sorting Application
Sorting is used as a subroutine in many algorithms.
You can also use sorting to solve Contains Duplicate!

First sort the array.

If there are duplicate elements, they will appear next to each other
in the sorted array!

We can check this with one more pass through the array.

Duplicates Via Sorting

bool containsDuplicateSort(std::vector<int>& vec) {
std: :sort(vec.begin(), vec.end()):;
for(std::size t 1 = 1; 1 < vec.size(); ++1) {
1f(vec[i] == vec[1i-1]) {
return true;
}
h

return false;

https://godbolt.org/z/b6VWIWKTbc

Duplicates Via Sorting

Charts Assembly

B benchmarkSet benchmarkUnorderedSet benchmarkSort
60000000

50000000
40000000
30000000

20000000

10000000

0
0 10000 20000 30000 40000 50000 60000 70000

ratio (CPU time / Noop time)
Lower is faster

https://quick-bench.com/q/ObREPxdViS_tSOiDF7jDkGR5MQg

Example 2

Cracking the Coding Interview Problem |.2:

Given two strings, determine if one is a permutation of the other.

Example: “cab” is a permutation of “abc”.

How could you solve this problem?

Sorting Algorithms

Sorting Algorithms

There is a huge literature on sorting algorithms.

Knuth's The Art of Computer Programming,Volume 3, has nearly 400 pages
on sorting algorithms

We will focus on 6 sorting algorithms:

Insertion Sort

Mergesort Counting Sort

Quicksort Radix Sort

Heapsort

Insertion Sort

Insertion Sort

Insertion sort is how we might sort cards in our hands.

Ve maintain the cards in our hand sorted, then pick up a new card and
insert it in the right position.

Inserting One Element

Imagine we have an array which is sorted except for the last element.

Ve now want to insert the last element into its proper position.

Idea: As long as the last 2 is smaller than the element before it, swap
their positions.

Inserting One Element

L2307]8]|2

*
2 < & :swap them.

Inserting One Element

L2307]8]|2

*
2 < & :swap them.

L1230 7] 2|8

*
2 < '(:swap them.

1

2

3

O

(

3

2 < & :swap them.

2

2 < '(:swap them.

2

3

3

O

O

(

2
4

2
3

(

Inserting One Element

2
A

Inserting One Element

L{23]o0]2]|7 |8

*
2 < 5 :swap them.

2

2 < 5 :swap them.

2

2 < 3 :swap them.

2

3

3

O

2
4

2|3

2
4

O

O

Inserting One Element

(

(

(

Inserting One Element

11212357 |8
4

2 £ 2 :we are done.

The whole array is sorted now.

Inserting One Element

11212357 |8
4

2 £ 2 :we are done.

The whole array is sorted now.

Note: When we only swap if the element is strictly smaller we preserve
the original ordering of equal elements in the array.

The 2 that started in the last position stays to the right of the 2 that started
in the second position.

Complexity: Memory

// Assumption: elements 0 through i-1 of vec are sorted
void insertOne(std::vector<int>& vec, std::size t 1) {
while(1 >= 1 && vec[1i] < vec[1-1]) {
std: :swap(vec[1], vec[1i-1]);
_—
}
}

https://godbolt.org/z/EfPfb3a5P

Notice we just use the variable 7 to keep track of our position.
Doing a swap also requires a temporary variable holding an 1nt.

In Place: An algorithm that only uses a constant number of extra variables to
hold indices and elements is called in place.

Complexity: Time
How many operations do we have to do in the worst case!

L2130 7]81]0

In the worst case, the inserted element must travel all the way to the
beginning.

When the sorted portion of the array has size 7, we have to do 1
comparisons and 7 sSwaps.

A swap can be done in a constant humber of operations, so the total
number of operations in the worst case is O (7).

Insertion Sort

// Assumption: elements 0 through i-1 of vec are sorted
volid insertOne(std::vector<int>& vec, std::size t 1) {
while(1 >= 1 && vec[1] < vec[1-1]) {
std::swap(vec[1], vec[1i-1]);
—
}
}

volid insertionSort(std::vector<int>& vec) {
for(std::size t 1 = 1; 1 < vec.size(); ++1) {
insertOne(vec, 1);

}

We iterate through the list starting from 7 = 1 and insert the 7* " element
into the right position among elements 0,...,7 — 1.

Insertion Sort: Invariant

An invariant is something that stays true throughout an algorithm.

They can help us argue that an algorithm is correct.

void insertionSort(std::vector<int>& vec) {
for(std::size t 1 = 1; 1 < vec.size(); ++1) ({
insertOne(vec, 1);
}
}

Invariant: At the start of the ;" iteration of the for loop,

vec|0],...,vec[i — 1] arein sorted order.

Insertion Sort: Invariant

volid insertionSort(std::vector<int>& vec) {
for(std::size t i = 1; i < vec.size(); ++i) {
insertOne(vec, 1);

}
}

Invariant: At the start of the ;" iteration of the for loop,

vec|0],...,vec|[i — 1] arein sorted order.

Initialization: When ¢ = 1 this just says vec|O| is sorted, which is true.

Insertion Sort: Invariant

volid insertionSort(std::vector<int>& vec) {
for(std::size t 1 = 1; 1 < vec.size(); ++1) {
insertOne(vec, 1);
}
}

Invariant: At the start of the 7!/ iteration of the for loop,

Vec[O], o ,Vec[i — 1] are in sorted order.

Maintenance: If the invariant holds in the i!" iteration then
vec[0],...,vec[i — 1] are sorted when we call insertOne(vec,i).
This will insert vec|i| in the correct position so that vec|0|,...,vec|i]

are in sorted order.

The invariant holds at the start of iteration 2 + 1.

Insertion Sort: Invariant

volid insertionSort(std::vector<int>& vec) {
for(std::size t 1 = 1; 1 < vec.size(); ++1) {
insertOne(vec, 1);

}
}

Invariant: At the start of the ;" iteration of the for loop,

vec|0],...,vec[i — 1] arein sorted order.

Termination: The for loop terminates when | = vec.size().

The invariant tells us that vec|0/|,...,vec|vec.size() — 1
are sorted!

Insertion Sort: Running Time

volid insertionSort(std::vector<int>& vec) {
for(std::size t 1 = 1; 1 < vec.size(); ++1) {
insertOne(vec, 1);

}
}

We have seen that insertOne(vec, i) takes ©(7) steps in the worst
case.

The total running time is at most a constant times
1+24---+n—1=nn-1)/2

The running time is O(n?) .

Insertion Sort: Complexity

volid insertionSort(std::vector<int>& vec) {

for(std::size t 1 = 1; 1 < vec.size(); ++1) {
insertOne(vec, 1);

}
}

s there an input that makes the algorithm take)(n°) steps!

Insertion Sort: Complexity

volid insertionSort(std::vector<int>& vec) {

for(std::size t 1 = 1; 1 < vec.size(); ++1) {
insertOne(vec, 1);

}
}

s there an input that makes the algorithm take)(n°) steps!

Remember the worst case for insertOne(vec, i) is when vec|i]
is smaller than all of vec|0|,...,vec|i — 1].

Insertion Sort: Complexity

volid insertionSort(std::vector<int>& vec) {

for(std::size t 1 = 1; 1 < vec.size(); ++1) {
insertOne(vec, 1);

}
}

s there an input that makes the algorithm take)(n°) steps!

Remember the worst case for insertOne(vec, i) is when vec|i]
is smaller than all of vec|0|,...,vec|i — 1].

Is there an input that always realizes the worst case of
insertOne(vec, i)?

Reverse Sorted

S| 715|312 [1]0

If the original array is sorted in descending order then insertOne(vec, i)
must always move vec|i| to the front, which takes {2(7) steps.

On an array of size . sorted in descending order insertion sort will take
Q(nz) steps.

The worst-case running time of insertion sortis O(n?) .

Best Case

If the original array is already sorted in ascending order then insertion
sort takes ©(n) steps.

The best-case running time of insertion sortis O(n).

Properties of
Insertion Sort

Properties

This is a good time to introduce some general properties of sorting
algorithmes.

In Place: Only a constant number of auxiliary variables (to hold indices
or elements) are used, in addition to the input array.

Stable: In the sorted array elements that compare equal are in the same
relative order as in the input.

Comparison Based: The algorithm only makes use of a comparison
function < on the elements.

Insertion sort has all of these properties.

Insertion Sort 1is Stable

1|2

2 £ 2 :we are done.

3

2
4

O

(

3

2
4

3

start of 1nsertOne

end of 1nsertlne

Insertion sort is stable because we only swap when an element is strictly

less than its predecessor.

An element cannot move past an equal element that begins to the left of it.

Stable

Why would you want a sorting algorithm to be stable?
Say we wanted to sort this list of Last Name, First Name pairs.

Apple, John
Orange, Tim
Apple, Elsa
Orange,Anna

Stable

Why would you want a sorting algorithm to be stable?

Say we wanted to sort this list of Last Name, First Name pairs.

Apple, John Orange,Anna
Orange, Tim Apple, Elsa
Apple, Elsa sort Apple, John

by first name

Orange,Anna Orange, Tim

Stable

Say we wanted to sort this list of Last Name, First Name pairs.

Orange,Anna
Apple, Elsa
Apple, John
Orange, Tim

For people with the same last name, a stable sort preserves the sorted
order of first names.

Stable

Say we wanted to sort this list of Last Name, First Name pairs.

Orange,Anna Apple, Elsa

Apple, Elsa — Apple, John

Apple, John stable sort Orange,Anna
by last name

Orange, Tim Orange, Tim

For people with the same last name, a stable sort preserves the sorted
order of first names.

Comparison Based

// Assumption: elements 0 through i-1 of vec are sorted
void insertOne(std::vector<int>& vec, std::size t 1) {
while(1 >= 1 && vec[1i] < vec[1-1]) {
std: :swap(vec[1], vec[1i-1]);
_—
}
}

We do not use the values vec|i| themselves in the algorithm.

We only compare elements to determine if we should swap them.

The algorithm can work on any type where < is defined.

Binary Search

Insert Into Sorted Array

L2307]8]|2

Recall the basic subroutine in insertion sort:

vec|0] < wvec[l] < .- <vec|i—1]

and we want to insert vec|i| into its correct position.
We gave an algorithm with running time ©(7) to do this.

Is there a better way!

Binary Search

vec= |12 3| 5|78 a = 2

Let's abstract out the problem. Say we have a sorted array

vec|0] < --- < vec|n — 1]

We also have a number a. We want to find an index 2 such that

vec|i — 1| < a < vec|i]

Binary Search

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

Let vec|—1| = —00 and vec|n| = 00 so that such an index
always exists.

(We won't actually do this in the algorithm, but it is helpful to imagine
these sentinel values for the analysis.)

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

a = 2 then the output should be 2.

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

a = 2 then the output should be 2.

a = —3 then the output should be 0.

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
a = 2 then the output should be 2.
a = —3 then the output should be 0.

a = 6 then the output should be 4.

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
a = 2 then the output should be 2.
a = —3 then the output should be 0.
a = 6 then the output should be 4.

a = 8 then the output should be 6.

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
Invariant: Maintain two indices left < right such that
vec|left — 1| < a < vec|right

Initialization: Let left = 0, right = n.

The invariant holds!

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
Invariant: Maintain two indices left < right such that
vec|left — 1| < a < vec|right

Termination: When left = right we are done.

Return 1left as the answer:

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
Invariant: Maintain two indices left < right such that
vec|left — 1| < a < vec|right

Maintenance: We want to bring 1eft and right closer together while
maintaining the invariant.

Update

—00 | 11235 |7 |8]| a = 2
left right

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right]

Update Idea: Probe the middle element between 1eft and right.

f a < vec|mid| we can update right = mid and maintain the
Invariant.

Update

—o0| 123|057 |8 | a = 2
left mid right

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right]

Update Idea: Probe the middle element between 1eft and right.

f a < vec|mid| we can update right = mid and maintain the
Invariant.

Update

—o0| 123|057 |8 | a = 2
left mid right

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right]

Update Idea: Probe the middle element between 1eft and right.

f a > vec|mid| we can update left = mid 4+ 1 and maintain the
Invariant.

Algorithm

std::size t insertionPoint(const std::vector<int>& vec, int a) {
std::size t left = 0;
std::size t right vec.size();
while(left < right) {
std::size t middle
if(a < vec[middle]) {
right = middle;
} else {
left = middle + 1;

left + (right - left)/2;

}

return left:

https://godbolt.org/z/e/7 T7nTzzs

Binary Search: Time

1123|578 a = 2

The algorithm terminates when left = right.

The initial distance between them is 71 , and the distance halves in each
Iiteration.

The worst-case running time of the algorithm is ©(logn) .

Inserting

1123|578 a = 2

1

We have now found where a should be inserted.

But what about the complexity of actually inserting a ?

In a resizable array, we have to shift over all the elements to the right
of the insertion point.

Inserting

1123|578 a = 2

1

We have now found where a should be inserted.

But what about the complexity of actually inserting a ?

In a resizable array, we have to shift over all the elements to the right
of the insertion point.

1123|578 a = 2

!

In a resizable array, we have to shift over all the elements to the right
of the insertion point.

L2235 |7]8

1

This still has a worst-case complexity of ©(n).

We do not realize an improvement for insertion sort.

Doubly Linked List

NEE: S
!

Can this idea work if we use a linked list instead?

In a linked list we can insert a new node into the list in constant time.

However, we do not have random access to the elements so we cannot
do binary search in O(logn) time.

Later we will look at balanced binary search trees which can maintain an
ordered list with O(logn) insertion time.

Counting Sort

Counting Sort

Counting sort is a non-comparison based sorting algorithm.

Say that we want to sort an array of 1 non-negative integers
between () and k .

Counting sort can do this in time O(n + k) .

For kK = O(n), this is better than is possible with a comparison based sort.

Counting sort is a stable sort, but it is not in place.

First Step

Let A be the input array of size n which holds non-negative integers
between 0 and fk .

We create an auxiliary array counts of size k£ + 2 to hold the number of
times each element of A appears.

counts|i + 1| = number of j where A|j| =i

Example: A = 912512383 |25

counts = 0003110120011

First Step

counts|i + 1| = number of j where A[j| =1

Example: A = 9125128325
counts = 0003 110]2]0
0 1 2 3 4 5 6 14

This can be done in one pass through A in time O(n).

Second Step

Convert the counts into indices so that counts|z| is first location of 7 in
the sorted order (if © appearsin A).

We do this by computing the prefix sums of counts.

Example: A= 192|512 |83 |25

counts = 01003 1,0]2[0]0(1] 1] afterstep |
0 1 2 3 4 5 6 14 8 9 10
counts = 010]0 344|606 |6|7]| 8| after step 2

0 1 2 3 4 5 6 / 3 9 10

A =

Example:

counts =

0

0

Third Step

2

0

1

O

0

2

2

3

3

3

4

4

3

4

5

2

6

6

O

6

14

6

3

(

9

3

10

after step 2

Write the sorted elements to an auxiliary array temp the same size as A .

Make a pass through A, let ¢ be our loop variable.

Set temp|counts|A[il|]| = Ali].

Increment counts|A[i|].

?
1 =0
counts= | 000 |3|4[4]6]|6 6|78
0 1 2 3 4 5 6 14 38 9 10
*
counts|A|0]]

tells us where A|0| belongs

counts = (0010|3144 |6 |6

0|7 |8

8 9 10
f

Increment

counts = (0010|3144 |6 |6

0| 8| 3
8 9 10
f
Increment

counts = (0010|3144 |6 |6

counts|A|l|]
tells us where A|1| belongs

0 1 2 3 4 5 6 /

counts= (0| 0] 1344|6606

0 1 2 3 4 5 6 V4
Increment

next time we see 2 it goes in position |

0 1 2 3 4 5 6 /

counts —

temp =

0

counts|A|2|]
tells us where A|2| belongs

10

counts —

temp =

0

13| 2
41516
4 5 6

*
Increment
5

10

counts = [0 0] 1[3[4 5|66]]06]| 8] 8

0 1 2 3 4 5 6 / 3 9 10

*

counts|A|3|

|
tells us where A|3| belongs

B Notice this is a
temp = | 2 | 2 3 9 stable sort!

0 1 2 3 4 5 6 /

counts —

temp =

0

0

Increment

10

counts —

temp =

0

0

3
?

3

10

where A[4] belongs

counts —

temp =

0

5
O |7 | &
! 8 9
f
Increment
9

counts —

temp =

0

0

10

counts —

temp =

0

10

counts —

temp =

0

0

0

|

counts —

temp =

0

0

0

|

10

counts —

temp =

0

0

O

counts —

temp =

0

0

131215
i L7
416606
4 5 6 !
f
Increment
D1 51819

Fourth Step

Copy the sorted array back into A.
A = temp

Find an example of the code here:

https://godbolt.org/z/38vKsMc59

Complexity

Step |: Count how many times each element of A appears. Record
results in counts .

Time: ©(n)
Step 2: Compute prefix sums of counts.
Time: ©O(k)
Step 3: Pass through A and write elements in their sorted place in temp .

Time: ©(n)

Total: k
Step 4: A = temp otal: O(n + &)

Time: ©(n)

Space Complexity

A drawback of counting sort is that it is not in place.

We have to use extra space of size ©(n + k) for counts and temp.

Stable Sort

Counting sort is a stable sort.
In step 3 we pass through A in forward order.

The leftmost element of a given value is placed in temp first.

After this element is placed, counts is incremented. The next element of
the same value will be placed to its right.

Radix Sort

Radix Sort

Say that we want to sort an array of 10 digit integers.
To do this with counting sort would require an auxiliary array of size 10'".

Radix sort uses the fact that the numbers are composed of digits to sort
them in several passes (one for each digit) with much less extra memory.

Any stable sort can be used in each pass, but radix sort pairs well with
counting sort.

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

103588
122339
177633
172808
309720
130520
675063
663175

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

103538

122339

177633 First we sort them by the
172808 least significant digit.

809720
130520
675063
663175

103588
122339
177633
172808
809720
130520
675063
663175

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

309720
130520
177633
675063
663175
172808
103538
122339

First we sort them by the
least significant digit.

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

309720
130520
177633
675063
663175
172808
103588
122339

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

309720

130520

177635 Stably sort by the second
675063 least significant digit.

663175
172808
103588
122339

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

309720
130520
177633
675063
663175
172808
103588
122339

172808
859720
130520
177633
122339
675063
668175
103588

Stably sort by the second
least significant digit.

309720
130520
177633
675063
663175
172808
103588
122339

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

172808
859720
130520
177633
122339
675063
668175
103588

Stably sort by the second
least significant digit.

177633 and 122339 agree on the
second least significant digit.

177633 comes first because the
sort is stable.

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

172808
809720
130520
177633
122339
675063
663175
103538

—_—

675063
663175
122339
130520
103588
177633
809720
172808

Stably sort by the third
least significant digit.

172808
809720
130520
177633
122339
675063
663175
103538

—_—

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

675063
663175
122339
130520
103588
177633
809720
172808

Stably sort by the third
least significant digit.

130520 and 103588 agree on the
third least significant digit.

130520 comes first because the
sort is stable.

675063
663175
122339
130520
103588
177633
809720
172808

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

130520
122339
172808
103588
675063
177633
663175
309720

Stably sort by the fourth
least significant digit.

For any numbers that agree on the
fourth digit, the one whose first three
digits are smaller comes first.

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

130520
122339
172808
103588
675063
177633
663175
309720

103538
122339
150520
809720
663175
172308
675063
177633

Stably sort by the fifth
least significant digit.

Radix Sort

Example: Let’s say we want to sort these 6-digit numbers.

103588
122339
130520
309720
663175
172808
675063
L'77633

103588
122339
130520
172808
L'77633
663175
675063
809720

Stably sort by the most
significant digit.

Why 1t works

Say we have two numbers @ < b . Let’s see why a comes before b
after radix sorting.

Say that a = ajasasayas

b = a1a2b3b4b5

They agree on the first two digits and first disagree on the third digit.

Since a3 < b3 after sorting on the third digit a will be placed before b .

Why 1t works

Say that a = ajasasayas

b = a1a2b3b4b5
Since a3 < b3 after sorting on the third digit a will be placed before b .

When we sort on the second and first digit, @ and b will compare equal.

But because we use a stable sort a will be placed before b.

Complexity

Say we have an array of size n with d-digit numbers where each digit is
between 0 and £ — 1.

If we use counting sort for the stable sort then each sort of a digit takes
time O(n + k).

The total time is O(d(n + k)).

The space used by the algorithm is ©(n + k).

