
Data structures & algorithms
Tutorial 4

Lesson overview

• Recap of important topics from last week

• Function call and return statement breakdown

• Factorial problem revisited with recursion explained

• Brief call stack explanation

• Fibonacci numbers

• Adding iterators to MyVector

• Working on the assignment and questions if we have time

A quick recap of important things from last
week

Templates

• Templates are similar to Java’s generics except better, they allow you to define a blueprint for a
class or function in which the user can use any type

• We can make functions or classes templated, doing so will allow it to accept a generic type as a
parameter

• The T is the generic type, and it can be called anything you want it to be… cat, guitar,
dsa…etc.

• You are also allowed to include as many generic types as you want! Which can become extremely
useful when creating a templated class

• When calling the doubleValue function, you can explicitly specify you type you would like…
int myValueDoubled = doubleValue<int>(10)

template <typename T>
T doubleValue(T a) {

return a * 2;
}

Copy constructor

• There is a primary difference between a shallow copy and a deep copy. A shallow copy is very similar to
a reference, in the fact that the if you alter the shallow copy… the original gets altered as well. The
only difference is a shallow copy creates a completely new object, whilst a reference creates an alias to
an existing one.

• A deep copy also creates a new object but copies all the data over into a new location that won’t affect
the original variable.

int main() {
MyVector myVector{1, 2, 3, 4};
MyVector shallowCopy{myVector};
shallowCopy[0] = 10;
myVector[0]; // Returns 10
shallowCopy[0]; // Returns 10
return 0;

}

int main() {
MyVector myVector{1, 2, 3, 4};
MyVector deepCopy{myVector};
deepCopy[0] = 10;
myVector[0]; // Returns 1
deepCopy[0]; // Returns 10
return 0;

}

Singly linked list

• A singly linked list is a data structure that closely resembles a vector (ArrayList). Rather than a
contiguous block of memory storing each piece of data like a vector. A singly linked list stores nodes for
each piece of data… each node is then linked together, with the previous node pointing at the next
one.

• Since each piece of data is stored in its own node, they aren’t stored in a contiguous line. Rather in
random areas on the RAM. Because of this, this means singly linked lists are not accessible via an index
like vectors. Which makes element access O(n) time complexity, rather than O(1)

• Sometimes linked lists will also have a variable for the head, and tail of the linked list. But not always!
Which will allow O(1) time complexity to retrieve either value and insert or delete at either end.

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

Singly linked list

• If I want to insert element 14 between nodes 1 and 9. All I would need to do is iterate through the
linked lists… And tell the node containing 1 to now point to the node containing 14… then tell the
node containing 14 to point to the node containing 9.

• Similarly, to push an element to the front of a linked list. All that is required is a couple of simple
steps… define the new node you want to be at the head… assign that new node as the linked lists new
head… and point the new head at the previous head. It’s that simple

2

10 9

1

14

29

3
0x06

0x03

0x09

0x05

0x08

0x02

0x01

Head
Tail

14 0x04

Types of Linked Lists

• We looked at the different types of linked lists, like the singly linked lists

2

10Head Tail10

Types of Linked Lists

2

10Head Tail10

• We looked at the different types of linked lists, like the singly linked lists, the circular singly linked list

Types of Linked Lists

2

10Head Tail10

• We looked at the different types of linked lists, like the singly linked lists, the circular singly linked list,
the doubly linked list

Types of Linked Lists

2

10Head Tail10

• We looked at the different types of linked lists, like the singly linked lists, the circular singly linked list,
the doubly linked list, and the circular doubly linked list

Lab time 😎

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

int main() {

return 0;
}

int addTen(int a) {
return a + 10;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

int main() {

return 0;
}

int addTen(int a) {
return a + 10;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

• So for example, if I made a function call like addTen(4)…

int main() {
int num = addTen(4);
return 0;

}

int addTen(int a) {
return a + 10;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

• So for example, if I made a function call like addTen(4)… what this call really turns
into…

int main() {
int num = addTen(4);
return 0;

}

int addTen(int a) {
return a + 10;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

• So for example, if I made a function call like addTen(4)… what this call really turns
into… is the return statement from that function

int main() {
int num = addTen(4);
return 0;

}

int addTen(int a) {
return a + 10;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

• So for example, if I made a function call like addTen(4)… what this call really turns
into… is the return statement from that function

• So what the compiler does when it reaches the return statement…

int main() {
int num = addTen(4);
return 0;

}

int addTen(int a) {
return a + 10;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

• So for example, if I made a function call like addTen(4)… what this call really turns
into… is the return statement from that function

• So what the compiler does when it reaches the return statement… is it replaces that
function call…

int main() {
int num = a + 10;
return 0;

}

int addTen(int a) {
return a + 10;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

• So for example, if I made a function call like addTen(4)… what this call really turns
into… is the return statement from that function

• So what the compiler does when it reaches the return statement… is it replaces that
function call… fills in necessary values with its parameters…

int addTen(int a) {
return a + 10;

}

int main() {
int num = 4 + 10;
return 0;

}

Function calls and return statements

• This is how I think of function calls, it will hopefully help with understanding recursion
which I will demonstrate shortly with a recognizable problem

• Whenever you call a function that returns a value, that function call instinctively turns into
whatever is in the return statement

• So for example, if I made a function call like addTen(4)… what this call really turns
into… is the return statement from that function

• So what the compiler does when it reaches the return statement… is it replaces that
function call… fills in necessary values with its parameters… and does the calculations if
needed

int addTen(int a) {
return a + 10;

}

int main() {
int num = 14;
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

int factorial(int n) {
if(n == 0) {

return 1;
}
return n * factorial(n - 1);

}

int main() {
int factorial = factorial(5);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 5 doesn’t equal 0 so we skip the base case

• After the condition, we hit the return
statement, so we can replace our function
call with that return

int factorial(5) {
if(5 == 0) {

return 1;
}
return 5 * factorial(5 - 1);

}

int main() {
int factorial = factorial(5);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 5 doesn’t equal 0 so we skip the base case

• After the condition, we hit the return
statement, so we can replace our function
call with that return

int factorial(5) {
if(5 == 0) {

return 1;
}
return 5 * factorial(5 - 1);

}

int main() {
int factorial = 5 * factorial(5 - 1);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 5 doesn’t equal 0 so we skip the base case

• After the condition, we hit the return
statement, so we can replace our function
call with that return

• Since we returned another function call, we
continue to recursively call it

int factorial(5) {
if(5 == 0) {

return 1;
}
return 5 * factorial(5 - 1);

}

int main() {
int factorial = 5 * factorial(5 - 1);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 4 doesn’t equal 0 so we skip the base case

int factorial(4) {
if(4 == 0) {

return 1;
}
return 4 * factorial(4 - 1);

}

int main() {
int factorial = 5 * factorial(4);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 4 doesn’t equal 0 so we skip the base case

• After the condition, we hit the return
statement, so we can replace our function
call with that return

• Since we returned another function call
again, we continue to recursively call it

int factorial(4) {
if(4 == 0) {

return 1;
}
return 4 * factorial(4 - 1);

}

int main() {
int factorial = 5 * 4 * factorial(3);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 3 doesn’t equal 0 so we skip the base case

int factorial(3) {
if(3 == 0) {

return 1;
}
return 3 * factorial(3 - 1);

}

int main() {
int factorial = 5 * 4 * factorial(3);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 3 doesn’t equal 0 so we skip the base case

• After the condition, we hit the return
statement, so we can replace our function
call with that return

• Since we returned another function call
again, we continue to recursively call it

int factorial(3) {
if(3 == 0) {

return 1;
}
return 3 * factorial(3 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * factorial(2);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 2 doesn’t equal 0 so we skip the base case

int factorial(2) {
if(2 == 0) {

return 1;
}
return 2 * factorial(2 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * factorial(2);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 2 doesn’t equal 0 so we skip the base case

• After the condition, we hit the return
statement, so we can replace our function
call with that return

• Since we returned another function call
again, we continue to recursively call it

int factorial(2) {
if(2 == 0) {

return 1;
}
return 2 * factorial(2 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * 2 * factorial(1);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 1 doesn’t equal 0 so we skip the base case

int factorial(1) {
if(1 == 0) {

return 1;
}
return 1 * factorial(1 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * 2 * factorial(1);
return 0;

}

Recursion for the factorial problem

• So we’ll put what I just showed you into
practice, with factorial(5)

• 1 doesn’t equal 0 so we skip the base case

• After the condition, we hit the return
statement, so we can replace our function
call with that return

• Since we returned another function call
again, we continue to recursively call it

int factorial(1) {
if(1 == 0) {

return 1;
}
return 1 * factorial(1 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * 2 * 1 * factorial(0);
return 0;

}

Recursion for the factorial problem

• Now this time, we have a different case.
Our base case gets triggered because 0 is
equal to 0

• This means the return statement inside the
condition will be returned

int factorial(0) {
if(0 == 0) {

return 1;
}
return 0 * factorial(0 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * 2 * 1 * factorial(0);
return 0;

}

Recursion for the factorial problem

• Now this time, we have a different case.
Our base case gets triggered because 0 is
equal to 0

• This means the return statement inside the
condition will be returned

• There is no recursive call in this return,
which is important for a base case

int factorial(0) {
if(0 == 0) {

return 1;
}
return 0 * factorial(0 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * 2 * 1 * 1;
return 0;

}

Recursion for the factorial problem

• Now this time, we have a different case.
Our base case gets triggered because 0 is
equal to 0

• This means the return statement inside the
condition will be returned

• There is no recursive call in this return,
which is important for a base case

• Then the compiler does some
calculations…

int factorial(0) {
if(0 == 0) {

return 1;
}
return 0 * factorial(0 - 1);

}

int main() {
int factorial = 5 * 4 * 3 * 2 * 1 * 1;
return 0;

}

Recursion for the factorial problem

• Now this time, we have a different case.
Our base case gets triggered because 0 is
equal to 0

• This means the return statement inside the
condition will be returned

• There is no recursive call in this return,
which is important for a base case

• Then the compiler does some
calculations… and you get the value of
factorial(5)

int factorial(0) {
if(0 == 0) {

return 1;
}
return 0 * factorial(0 - 1);

}

int main() {
int factorial = 120;
return 0;

}

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call…

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call…

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call… it pushes it to the stack and enters its scope

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call… it pushes it to the stack and enters its scope

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

isNumberEven()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call… it pushes it to the stack and enters its scope

• The program now begins to execute each line within that
function…

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

isNumberEven()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call… it pushes it to the stack and enters its scope

• The program now begins to execute each line within that
function…

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

isNumberEven()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call… it pushes it to the stack and enters its scope

• The program now begins to execute each line within that
function… it doesn’t enter the condition as 19 % 2 != 0

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

isNumberEven()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call… it pushes it to the stack and enters its scope

• The program now begins to execute each line within that
function… it doesn’t enter the condition as 19 % 2 != 0

• Finally hits the return statement and re-enters the scope of
main, so it can pop that function call from the stack

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

isNumberEven()

The call stack

• The call stack is what our programs use to manage function calls

• Whenever a function call is made, it is pushed onto the call
stack, and when the program reaches the end of that function
scope, it gets popped from the stack

• So the program starts in main, and pushes that to the stack…
the program will go through each line… and when it sees a
function call… it pushes it to the stack and enters its scope

• The program now begins to execute each line within that
function… it doesn’t enter the condition as 19 % 2 != 0

• Finally hits the return statement and re-enters the scope of
main, so it can pop that function call from the stack

bool isNumberEven(bool n) {
if(n % 2 == 0) {

return true;
}
return false;

}

int main() {
int num = 19;
bool isEven = isNumberEven(num);
return 0;

}
Call Stack

main()

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack

main()

main()

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

return fibonacci(4);

main()

fibonacci(4)

• The program enters
fibonacci(4) and will
proceed to recursively
call until its base case is
triggered, adding each
call to the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

return fibonacci(3) + fibonacci(2);

main()

fibonacci(4)

fibonacci(2)

fibonacci(3)

• The program enters
fibonacci(4) and will
proceed to recursively
call until its base case is
triggered, adding each
call to the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack

main()

fibonacci(4)

fibonacci(2)

fibonacci(3)

fibonacci(1)

fibonacci(2)

Return (fibonacci(2) + fibonacci(1)) + fibonacci(2);

fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

• The program enters
fibonacci(4) and will
proceed to recursively
call until its base case is
triggered, adding each
call to the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack

main()

Return ((fibonacci(1) + fibonacci(0)) + fibonacci(1)) + fibonacci(2);

fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

fibonacci(4)

fibonacci(2)

fibonacci(3)

fibonacci(1)

fibonacci(2)

fibonacci(0)

fibonacci(1)

• The program enters
fibonacci(4) and will
proceed to recursively
call until its base case is
triggered, adding each
call to the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

main()

fibonacci(4)

fibonacci(2)

fibonacci(3)

fibonacci(1)

fibonacci(2)

fibonacci(0)

fibonacci(1)

Return ((1 + fibonacci(0)) + fibonacci(1)) + fibonacci(2);

• fibonacci(1) triggers
the base case and
returns n, in this case 1

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(0)

main()

fibonacci(4)

fibonacci(2)

fibonacci(3)

fibonacci(1)

fibonacci(2)

fibonacci(0)

Return ((1 + fibonacci(0)) + fibonacci(1)) + fibonacci(2);

• fibonacci(1) triggers
the base case and
returns n, in this case 1

• The compiler pops this
call off the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(0)

main()

fibonacci(4)

fibonacci(2)

fibonacci(3)

fibonacci(1)

fibonacci(2)

fibonacci(0)

Return ((1 + 0) + fibonacci(1)) + fibonacci(2);

• fibonacci(0) triggers
the base case and
returns n, in this case 0

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack

main()

Return ((1 + 0) + fibonacci(1)) + fibonacci(2);

• fibonacci(0) triggers
the base case and
returns n, in this case 0

• The compiler pops this
call off the call stack

fibonacci(4)

fibonacci(2)

Fibonacci(3)

fibonacci(1)

fibonacci(2)

fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

main()

fibonacci(4)

fibonacci(2)

Fibonacci(3)

fibonacci(1)

fibonacci(2)

Return ((1 + 0) + fibonacci(1)) + fibonacci(2);

• The compiler knows that
fibonacci(2)
evaluates to 1 + 0

• The compiler pops it
from the call stack and
returns 1 + 0

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(1)

main()

fibonacci(4)

fibonacci(2)

Fibonacci(3)

fibonacci(1)

Return (1 + fibonacci(1)) + fibonacci(2);

• The compiler knows that
fibonacci(2)
evaluates to 1 + 0

• The compiler pops it
from the call stack and
returns 1 + 0

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(1)

main()

fibonacci(4)

fibonacci(2)

Fibonacci(3)

fibonacci(1)

Return (1 + fibonacci(1)) + fibonacci(2);

• fibonacci(1) triggers
the base case and
returns n, in this case 1

• The compiler pops this
call off the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

fibonacci(1)

main()

fibonacci(4)

fibonacci(2)

Fibonacci(3)

fibonacci(1)

Return (1 + 1) + fibonacci(2);

• fibonacci(1) triggers
the base case and
returns n, in this case 1

• The compiler pops this
call off the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

Fibonacci(3)

fibonacci(1)

Return (1 + 1) + fibonacci(2);

• fibonacci(1) triggers
the base case and
returns n, in this case 1

• The compiler pops this
call off the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(3) fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

Fibonacci(3)

fibonacci(1)

Return (1 + 1) + fibonacci(2);

• The compiler knows that
fibonacci(3)
evaluates to 1 + 1

• The compiler pops it
from the call stack and
returns 1 + 1

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + fibonacci(2);

• The compiler knows that
fibonacci(3)
evaluates to 1 + 1

• The compiler pops it
from the call stack and
returns 1 + 1

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + fibonacci(2);

• fibonacci(2) doesn’t
trigger the base case,
and further gets
recursively called

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + fibonacci(2);

• fibonacci(2) doesn’t
trigger the base case,
and further gets
recursively called

• These get pushed to the
call stack

fibonacci(1) fibonacci(0)

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + (fibonacci(1) + fibonacci(0);

• fibonacci(2) doesn’t
trigger the base case,
and further gets
recursively called

• These get pushed to the
call stack

fibonacci(1) fibonacci(0)

fibonacci(0)

fibonacci(1)

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + (fibonacci(1) + fibonacci(0);

• fibonacci(1) triggers
the base case and
returns n, in this case 1

fibonacci(1) fibonacci(0)

fibonacci(0)

fibonacci(1)

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + (1 + fibonacci(0);

• fibonacci(1) triggers
the base case and
returns n, in this case 1

• The compiler pops this
call off the call stack

fibonacci(0)

fibonacci(0)

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + (1 + fibonacci(0);

• fibonacci(0) triggers
the base case and
returns n, in this case 0

fibonacci(0)

fibonacci(0)

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + (1 + fibonacci(0);

• fibonacci(0) triggers
the base case and
returns n, in this case 0

• The compiler pops this
call off the call stack

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

fibonacci(2)

main()

fibonacci(4)

fibonacci(2)

return 2 + (1 + 0);

• The compiler knows that
fibonacci(2)
evaluates to 1 + 0

• The compiler pops it
from the call stack and
returns 1 + 0

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

main()

fibonacci(4)

return 2 + 1;

• The compiler knows that
fibonacci(2)
evaluates to 1 + 0

• The compiler pops it
from the call stack and
returns 1 + 0

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack
fibonacci(4)

main()

main()

fibonacci(4)

return 2 + 1;

• The compiler knows that
fibonacci(4)
evaluates to 2 + 1

• The compiler pops it
from the call stack and
returns 2 + 1

Recursion with Fibonacci int fibonacci(int n) {
if(n == 0 n || n == 1) {

return n;
}
return (fibonacci(n-1) + fibonacci(n-2));

} Call Stack

main()

main()

return 3;

• The compiler knows that
fibonacci(4)
evaluates to 2 + 1

• The compiler pops it
from the call stack and
returns 2 + 1

Give “Fibonacci numbers” and try and implement a
solution to the problem!

Adding iterators to MyVector

• An iterator is essentially a high-level abstraction of a pointer, that you can you use to traverse through a
container like a vector or linked list

11 7 2 19 5

Adding iterators to MyVector

• An iterator is essentially a high-level abstraction of a pointer, that you can you use to traverse through a
container like a vector or linked list

• We have looked briefly at the common operations that are in most C++ containers like begin() and
end() which both will return an iterator

11 7 2 19 5

Adding iterators to MyVector

• An iterator is essentially a high-level abstraction of a pointer, that you can you use to traverse through a
container like a vector or linked list

• We have looked briefly at the common operations that are in most C++ containers like begin() and
end() which both will return an iterator

• begin() will return an iterator that points to the first element in this container

11 7 2 19 5

begin()

Adding iterators to MyVector

• An iterator is essentially a high-level abstraction of a pointer, that you can you use to traverse through a
container like a vector or linked list

• We have looked briefly at the common operations that are in most C++ container like begin() and
end() which both will return an iterator

• begin() will return an iterator that points to the first element in this container

• Whilst end() will return an iterator that points one past the last element in the container

11 7 2 19 5

begin() end()

Adding iterators to MyVector

• The goal for this exercise is to implement the methods to return both the begin() and end()
iterators of MyVector, as well as the constructor for Iterator

11 7 2 19 5

begin() end()

Adding iterators to MyVector

• The goal for this exercise is to implement the methods to return both the begin() and end()
iterators of MyVector, as well as the constructor for Iterator

• You will also need to implement the operator functions to…

11 7 2 19 5

begin() end()

Adding iterators to MyVector

• The goal for this exercise is to implement the methods to return both the begin() and end()
iterators of MyVector, as well as the constructor for Iterator

• You will also need to implement the operator functions to… increment the iterator…

11 7 2 19 5

begin() end()

Adding iterators to MyVector

• The goal for this exercise is to implement the methods to return both the begin() and end()
iterators of MyVector, as well as the constructor for Iterator

• You will also need to implement the operator functions to… increment the iterator… and decrement
the iterator to allow you to traverse through it

11 7 2 19 5

end()begin()

Adding iterators to MyVector

• The goal for this exercise is to implement the methods to return both the begin() and end()
iterators of MyVector, as well as the constructor for Iterator

• You will also need to implement the operator functions to… increment the iterator… and decrement
the iterator to allow you to traverse through it

• As well as the operator function to use * to de-reference your iterator to get the value stored. So when
you use *(MyVector.begin()) it will return the value 12

11 7 2 19 5

end()begin()

Adding iterators to MyVector

• The goal for this exercise is to implement the methods to return both the begin() and end()
iterators of MyVector, as well as the constructor for Iterator

• You will also need to implement the operator functions to… increment the iterator… and decrement
the iterator to allow you to traverse through it

• As well as the operator function to use * to de-reference your iterator to get the value stored. So when
you use *(MyVector.begin()) it will return the value 11

• This will be extremely useful when completing your first assignment, which was released yesterday

11 7 2 19 5

end()begin()

Give “Adding iterators to MyVector” a go to try and
implement what we need!

Access to google drive

•I will upload slides to the Google Drive after every class

•https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_

ODNJOfgq9-uI

Contact: Thomas.golding@uts.edu.au

https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI
https://drive.google.com/drive/folders/1H5psebndM_YVyoJE-BJ_ODNJOfgq9-uI

