
Topics for Today

● Revision
○ Templating
○ Iterators

● CS Theory
○ Half-closed intervals
○ Recursion

● This week’s lab
○ Recursive Factorial
○ Recursive vs Iterative Fibonacci
○ Adding Iterators to MyVector

Templates
Templates allow us to make functions reusable for different types.

In the line template<typename T>, T is our name for our generic
type, it’s like a stand-in for int, or std::string, or Node*, etc;

whatever it needs to be in an implementation.

The compiler will make/call this for us

Half-closed Intervals
Half-closed intervals is the name given to an indexing convention commonly used
in programming.

In mathematical notation we can write it as [low, high)
This means that the boundary at low is included, and the boundary at high is
excluded.

It basically means that for your range, you start at low, and stop one before high.
This is how we usually deal with arrays anyway.
i.e.
for (int i=0; i < array.size(); i++)
The range is equivalent to [0, array.size)
So we start at the inclusive 0 index, and stop when we reach the excluded high
index.

Divide and Conquer
There are a few programming paradigms we will be looking at in this course.
Today we are looking at Divide and Conquer, which is about breaking problems
down into smaller parts, and solving the sub-problems and recombining them into
an overall solution.
This makes divide and conquer naturally well suited to recursive programming, but
it does not necessarily need to be programmed that way.

Some D&C algorithms we’ll be studying include:
● Mergesort
● Quicksort

Recursion
Most of the algorithms we have written so far dealing with sequences have done
so in an iterative manner. Today we are going to use an alternative methodology,
and solve them recursively.

Recursion is about functions that call themselves. Each function call either creates
another function call on a simpler input, or when the input is adequately simple, it
can immediately return a value, which is then passed up into the previous function
calls, constructing the total answer to the problem.

Recursion can be a much easier and natural way to implement certain algorithms
than iteration.

Recursion suits dealing with nodes very well, which to do iterative requires
numerous nested loops, so recursion can result in much code.

Recursive Factorial

Factorial (!) is a mathematical operator that returns the product of all integers
between the supplied number and one.
3! = 3 * 2 * 1 = 6
4! = 4 * 3 * 2 * 1 = 24

Previously in week 2, we solved factorial iteratively using the code:
n = 3, result = 1
i = 2, (2 <= 3), result = 2
i = 3, (3 <= 3), result = 6
i = 4, (4 <= 3), no-operation
return result

Recursive Factorial

This week, we want to write this again recursively, that is by having the function simplify its
input and call itself, instead of by using a for-loop and iterating towards the answer.

To calculate recursively, we need a point when our input gets so simple, we can
immediately return the solution. For us, this case is that 0! = 1, so when n = 0, return 1.

= 3 * Fac(2)

 = 2 * Fac(1)

 = 1 * Fac(0)

 = 1

Fac(3)

= 3 * Fac(2)

 = 2 * Fac(1)

 = 1 * 1

= 3 * Fac(2)

 = 2 * 1

= 3 * 2

Fac(3) Fac(3) Fac(3) = 6

Fibonacci Numbers
Do we remember the Fibonacci Numbers?
They follow this intuitive formula:

These numbers form a sequence, each element being the sum of the two prior.
F = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …
n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, …

We are going to build a function to get the nth number in the sequence in both
iterative and recursive styles, to show the compare the two.

To write it recursively, either call your function again twice with n-1 and n-2,
or if it’s small enough, return either 0 or 1.

Recursion
Unfortunately when we get to the execution and hardware level, recursion does not
tend to do as well as iteration. There is a greater overhead associated with
function calls which are the nature of recursive design. They also consume more
memory because they hold so many unfinished functions at a given time.

That said, it is still a good option.
It lends itself nicely to node based and graph theory data structures, and this is
what you will be working on in assignment 2

Iterators
Iterators are objects that allow us another way of iterating through an
array/list like data structure.
An iterator is a pointer to a place in memory within our list. We can increment
and decrement them (traverse the list),
and dereference them to see what is inside.

2 31 4

begin()

iter++

end()

When our iterator reaches the end address, it is no longer in the
valid range of our item, and we stop before trying to access the
value stored at this address.

In this activity we will be writing four member functions for the iterator class:
● MyVector<T>::Iterator::Iterator(T* input) - Constructor, make an iterator on input
● T& MyVector<T>::Iterator::operator*() - Return the value stored at the point the iterator is on
● typename MyVector<T>::Iterator& MyVector<T>::Iterator::operator++() - Move the

iterator one position forward
● typename MyVector<T>::Iterator& MyVector<T>::Iterator::operator--() - Move the

iterator one position backward

And two functions for the MyVector class:
● typename MyVector<T>::Iterator MyVector<T>::begin() - return an iterator for the first

element of the vector
● typename MyVector<T>::Iterator MyVector<T>::end() - return an iterator after the last

element of the vector

Adding Iterators to MyVector
Last week we ran out of time to template MyVector, and we are starting with that already done. Ask me if
that causes any confusion. It just means that MyVector can store different types now, like you can have a
Vector<int> or Vector<float>, etc.

Today we are making an Iterator class for our MyVector class. Iterator class supplied in the .hpp file.
I recommend you work in the following order:

