Binary Search

Insert Into Sorted Array

L2307]8]|2

Recall the basic subroutine in insertion sort:

vec|0] < wvec[l] < .- <vec|i—1]

and we want to insert vec|i| into its correct position.
We gave an algorithm with running time ©(7) to do this.

Is there a better way!

Binary Search

vec= |12 3| 5|78 a = 2

Let's abstract out the problem. Say we have a sorted array

vec|0] < --- < vec|n — 1]

We also have a number a. We want to find an index 2 such that

vec|i — 1| < a < vec|i]

Binary Search

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

Let vec|—1| = —00 and vec|n| = 00 so that such an index
always exists.

(We won't actually do this in the algorithm, but it is helpful to imagine
these sentinel values for the analysis.)

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

a = 2 then the output should be 2.

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

a = 2 then the output should be 2.

a = —3 then the output should be 0.

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
a = 2 then the output should be 2.
a = —3 then the output should be 0.

a = 6 then the output should be 4.

Examples

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
a = 2 then the output should be 2.
a = —3 then the output should be 0.
a = 6 then the output should be 4.

a = 8 then the output should be 6.

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
Invariant: Maintain two indices left < right such that
vec|left — 1| < a < vec|right

Initialization: Let left = 0, right = n.

The invariant holds!

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
Invariant: Maintain two indices left < right such that
vec|left — 1| < a < vec|right

Termination: When left = right we are done.

Return 1left as the answer:

Binary Search: Invariant

—o0 [112|397]8|X
-] 0 n-l n

We want to find an index ¢ such that vec|i — 1| < a < vec|i].
Invariant: Maintain two indices left < right such that
vec|left — 1| < a < vec|right

Maintenance: We want to bring 1eft and right closer together while
maintaining the invariant.

Update

—00 | 11235 |7 |8]| a = 2
left right

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right]

Update Idea: Probe the middle element between 1eft and right.

f a < vec|mid| we can update right = mid and maintain the
Invariant.

Update

—o0| 123|057 |8 | a = 2
left mid right

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right]

Update Idea: Probe the middle element between 1eft and right.

f a < vec|mid| we can update right = mid and maintain the
Invariant.

Update

—o0| 123|057 |8 | a = 2
left mid right

Invariant: Maintain two indices left < right such that

vec|left — 1| < a < vec|right]

Update Idea: Probe the middle element between 1eft and right.

f a > vec|mid| we can update left = mid 4+ 1 and maintain the
Invariant.

Algorithm

std::size t insertionPoint(const std::vector<int>& vec, int a) {
std::size t left = 0;
std::size t right vec.size();
while(left < right) {
std::size t middle
if(a < vec[middle]) {
right = middle;
} else {
left = middle + 1;

left + (right - left)/2;

}

return left:

https://godbolt.org/z/e/7 T7nTzzs

Binary Search: Time

1123|578 a = 2

The algorithm terminates when left = right.

The initial distance between them is 71 , and the distance halves in each
Iiteration.

The worst-case running time of the algorithm is ©(logn) .

Inserting

1123|578 a = 2

1

We have now found where a should be inserted.

But what about the complexity of actually inserting a ?

In a resizable array, we have to shift over all the elements to the right
of the insertion point.

Inserting

1123|578 a = 2

1

We have now found where a should be inserted.

But what about the complexity of actually inserting a ?

In a resizable array, we have to shift over all the elements to the right
of the insertion point.

1123|578 a = 2

!

In a resizable array, we have to shift over all the elements to the right
of the insertion point.

L2235 |7]8

1

This still has a worst-case complexity of ©(n).

We do not realize an improvement for insertion sort.

Doubly Linked List

NEE: S
!

Can this idea work if we use a linked list instead?

In a linked list we can insert a new node into the list in constant time.

However, we do not have random access to the elements so we cannot
do binary search in O(logn) time.

Later we will look at balanced binary search trees which can maintain an
ordered list with O(logn) insertion time.

Divide and Conquer:
Example

Buy and Sell Stock

We are first going to illustrate divide and conquer with an example.

Leetcode |21:Best time to buy and sell stock (Easy, Blind 75)

We are given a vector prices where prices|i| is the price of a stock on
day ;. Ve can buy the stock once, and a later date sell it.

What is the maximum profit we can make?

Buy and Sell Stock

We are first going to illustrate divide and conquer with an example.

Leetcode |21:Best time to buy and sell stock (Easy, Blind 75)

We are given a vector prices where prices|i| is the price of a stock on
day ;. Ve can buy the stock once, and a later date sell it.

What is the maximum profit we can make?
In other words, we want to compute

max prices|j| — prices]|i]
1<J

Examples

prices

0 1

Examples

prices max profit: 0

0 1

Examples

prices max profit: 0

0 1

The answer is not just the maximum value minus the minimum value.

Examples

prices max profit: 0

0 1

The answer is not just the maximum value minus the minimum value.

prices (4693|2081

0 1 2 3 4 5 6 /

Examples

prices max profit: 0

0 1

The answer is not just the maximum value minus the minimum value.

prices |46 (932|581 max profit: 6

0 1 2 3 4 5 6 /

Divide and Conquer

prices |4 /1693|2581

0 1 2 3 4 5 6 /

There are 3 possible cases:

1) The best time to buy and sell both occur in the first half of the array.
2) The best time to buy and sell both occur in the second half of the array.

3) The best time to buy occurs in the first half of the array and the best
time to sell occurs in the second half of the array.

Divide and Conquer

There are 3 possible cases:
|) The best time to buy and sell both occur in the first half of the array.

2) The best time to buy and sell both occur in the second half of the array.

The first two cases are instances of the buy and sell stock problem on an
array of half the size.

Divide and Conquer

There are 3 possible cases:
|) The best time to buy and sell both occur in the first half of the array.

2) The best time to buy and sell both occur in the second half of the array.

The first two cases are instances of the buy and sell stock problem on an
array of half the size.

This is the divide part of divide and conquer. We express the original
problem in terms of instances of the original problem on smaller inputs.

Additional Work

We do not completely express the problem in terms of the same problem
on smaller inputs because there is the third case.

3) The best time to buy occurs in the first half of the array and the best
time to sell occurs in the second half of the array.

We have to solve this problem separately. Do you see how to solve it!

Additional Work

We do not completely express the problem in terms of the same problem
on smaller inputs because there is the third case.

3) The best time to buy occurs in the first half of the array and the best
time to sell occurs in the second half of the array.

We have to solve this problem separately. Do you see how to solve it!

For this case the best time to buy is the minimum value in the first half.

The best time to sell is the maximum value in the second half.

Additional Work

3) The best time to buy occurs in the first half of the array and the best
time to sell occurs in the second half of the array.

For this case the best time to buy is the minimum value in the first half.

The best time to sell is the maximum value in the second half.

The time to solve this case is ©(n).

Example

prices |4 /6|93 (2|5 |8]1

0 1 2 3 4 5 6 /

The maximum profit is going to be the maximum of what we can achieve
in the three cases.

|) maximum profiton |4 |6 | 9| 3

Example

prices |4 /6932|581

0 1 2 3 4 5 6 /

The maximum profit is going to be the maximum of what we can achieve
in the three cases.

|) maximum profiton |4 |6 | 9| 3

2) maximum profiton |2 | 5| 8 | 1

Example

prices |4 /16|93 (2 |5|8]1

0 1 2 3 4 5 6 /

The maximum profit is going to be the maximum of what we can achieve
in the three cases.

|) maximum profiton |4 |6 | 9| 3

2) maximum profiton |2 | 5| 8 | 1

3) maximum profit when we buy first half, sell second. This is 5.

prices (4|6 |9 3|25 |81

0 1 2 3 4 5 6 /

We recursively solve the first two cases:

|) maximum profit on 416193

This is the maximum profit from the three cases:

prices (4|6 |9 3|25 |81

0 1 2 3 4 5 6 /

We recursively solve the first two cases:

|) maximum profit on 416193

This is the maximum profit from the three cases:

first half
profit = 2

prices (4|16 |93 (20|81
0 1 2 3 4 5 6 14
We recursively solve the first two cases:

|) maximum profit on 416193

This is the maximum profit from the three cases:

first half second half

profit = 2 profit = (

prices (4|16 |93 (20|81
0 1 2 3 4 5 6 /
We recursively solve the first two cases:

|) maximum profit on 416193

This is the maximum profit from the three cases:

buy first half

first half second half sell second half

profit = 2 profit =0 profit =5

prices (4|16 |93 (20|81
0 1 2 3 4 5 6 /
We recursively solve the first two cases:

|) maximum profit on 416193

This is the maximum profit from the three cases:

buy first half

first half second half sell second half

profit = 2 profit =0 profit =5

The maximum profit from this case is 5.

prices (4|6 |9 3|25 |81

0 1 2 3 4 5 6 /

We recursively solve the first two cases:

2) maximum profiton |2 | 5| 8 | 1

This is the maximum profit from the three cases:

prices (4|6 |9 3|25 |81

0 1 2 3 4 5 6 /

We recursively solve the first two cases:

2) maximum profiton |2 | 5| 8 | 1

This is the maximum profit from the three cases:

first half
profit = 3

prices (4|16 |93 (20|81
0 1 2 3 4 5 6 14
We recursively solve the first two cases:

2) maximum profiton |2 | 5| 8 | 1

This is the maximum profit from the three cases:

first half second half

profit = 3 profit = 0

prices (4|16 |93 (20|81
0 1 2 3 4 5 6 /
We recursively solve the first two cases:

2) maximum profiton |2 | 5 | 8 | 1

This is the maximum profit from the three cases:

buy first half

first half second half sell second half

profit =3 profit =0 profit =6

prices (4|16 |93 (20|81
0 1 2 3 4 5 6 /
We recursively solve the first two cases:

2) maximum profiton |2 | 5 | 8 | 1

This is the maximum profit from the three cases:

buy first half

first half second half sell second half

profit =3 profit =0 profit =6

The maximum profit from this case is 6.

Wrap Up

prices |4 /16|93 (2 |5]|8]1

0 1 2 3 4 5 0 14
|) maximum profiton |4 |6 | 9 | 3 profit = o
2) maximum profiton |2 | 5 | 8 | 1 profit = 6

3) maximum profit when we buy first half, sell second: profit = o

The answer is the maximum of the three cases so 6.

Code

int maxProfit(std::vector<int>::iterator begin, std::vector<int>::iterator end) {
if (end - begin <= 1) {
return 0;

h
std: :vector<int>::iterator mid = begin + (end - begin)/2;
int buyFirstHalfSellSecond = *std::max element(mid, end) -
*std::min element(begin, mid);
return std::max({maxProfit(begin, mid), maxProfit(mid, end), buyFirstHalfSellSecond});

Base case: end — begin < 1.

In this case the max profit is 0.

https://godbolt.org/z/r9b1zM | eb

Code

int maxProfit(std::vector<int>::iterator begin, std::vector<int>::iterator end) {
if (end - begin <= 1) {
return 0:;

y
std: :vector<int>::iterator mid = begin + (end - begin)/2;
int buyFirstHalfSellSecond = *std::max element(mid, end) -
*std::min element(begin, mid);
return std::max({maxProfit(begin, mid), maxProfit(mid, end), buyFirstHalfSellSecond});

Compute the midpoint to set up the divide step:

mid = begin + (end — begin)/2;

Code

int maxProfit(std::vector<int>::iterator begin, std::vector<int>::iterator end) {
1f (end - begin <= 1) {
return 0:;

}
std: :vector<int>::iterator mid = begin + (end - begin)/2;
int buyFirstHalfSellSecond = *std::max element(mid, end) -
*std::min element(begin, mid);
return std::max({maxProfit(begin, mid), maxProfit(mid, end), buyFirstHalfSellSecond});

}

Compute the maximum profit from case 3:

buyFirstHalfSellSecond = xmax_element(mid, end)

— xmin_element(begin, mid)

Code

int maxProfit(std::vector<int>::iterator begin, std::vector<int>::iterator end) {
if (end - begin <= 1) {
return 0:;

y
std: :vector<int>::iterator mid = begin + (end - begin)/2;
int buyFirstHalfSellSecond = *std::max element(mid, end) -
*std::min element(begin, mid);
return std::max({maxProfit(begin, mid), maxProfit(mid, end), buyFirstHalfSellSecond});

Return the maximum of the two recursive calls
and buyFirstHalfSellSecond.

Divide and Conquer:
Recurrence

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Create the division into subproblems:

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Create the division into subproblems:

In the buy and sell stock problem this step was trivial, we just
computed the midpoint.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Create the division into subproblems:

In the buy and sell stock problem this step was trivial, we just
computed the midpoint.

Later we will see quicksort, where this step is substantial work.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Complete the cases:

Handle any case that is nhot covered by the division into subproblems.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Complete the cases:

Handle any case that is nhot covered by the division into subproblems.

This was the main work of the buy and sell stock algorithm.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Combine:

Combine the answers to the subproblems into an answer to the
original problem.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Combine:

Combine the answers to the subproblems into an answer to the
original problem.

In buy and sell stock we combined with the maximum of 3 values.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Combine:

Later we will see mergesort where the combine step is substantial
work.

Divide and Conquer

Divide: Express the problem in terms of the same (or similar) problems on
smaller inputs.

Create/Complete/Combine: The extra work to create the subproblemes,
complete additional cases, and combine answers into an overall solution.

Combine:

Later we will see mergesort where the combine step is substantial
work.

Create/Complete/Combine is the spice of a D&C algorithm.

Time Complexity

How fast is our divide and conquer algorithm for the buy and sell stock
problem!?

Let us see how to analyze the time complexity of a divide and conquer
algorithm.

Their recursive nature leads to a recurrence relation for the time
complexity.

Time Complexity

Let T'(n) be the time it takes to solve the buy and sell stock problem
on a vector of size n.

Our buy and sell stock algorithm computes the maximum of the three
possible cases:

1) Maximum profit on first half: this takes time T'(|n/2]).

2) Maximum profit on second half: this takes time T'({n/2]).

3) Maximum profit to buy in the first half and sell in the second:
this takes time O(n).

Time Complexity

1) Maximum profit on first half: this takes time T'(|n/2]).
2) Maximum profit on second half: this takes time 1'([n/2]) .

3) Maximum profit to buy in the first half and sell in the second:
this takes time O(n).

For the combine step we take the maximum of the 3 values from these
steps, and to create the subproblems we find the midpoint.

This additional work just takes constant time.

Time Complexity

The time to solve the problem is the sum of the time to solve the three cases,
plus an O(1) term to compute the division and combine by taking the max.

This gives a recurrence relation for the running time.

=
S
H

I'([n/2)) +T(In/2])+ O(n)
T(1) = 0(1) base case

To figure out the running time we need to solve for T'(n).

Time Complexity

The time to solve the problem is the sum of the time to solve the three cases,
plus an O(1) term to compute the division and combine by taking the max.

This gives a recurrence relation for the running time.

=
S
H

T(in/2]) + T(In/21) +0@)

B create, complete,
T(1) = 0(1) base case cornbine

To figure out the running time we need to solve for T'(n).

Let’s assume 1 is a power of 2 so we don’t have to worry about the floors
and ceilings.

Our recurrence relation then becomes
T(n)=2T(n/2) 4+ O(n)

T(1) =0(1) base case

Let’s assume 1 is a power of 2 so we don’t have to worry about the floors
and ceilings.

Our recurrence relation then becomes

Anatomy of the recurrence:

T(n) = 2T(n/2) + O(n) time for create,

/ \ complete, combine

number of size of
subproblems subproblems

Recursion Tree

T'(n)

Recursion Tree

T'(n)

T

I'(n/2) I'(n/2)

Recursion Tree

/T’(n)\
I'(n/2) I'(n/2)
N
T(n/4) T(n/4) 4cn/2

Recursion Tree

/T(n)\
T(n/2) T(n/2)
N s

cn /2

Recursion Tree

/T(n)\
T(n/2) T(n/2)
N s
T(n/4) T(n/4) T(n/4)

Recursion Tree

/ﬂn)\
I'(n/2) I'(n/2)
N AN
I'(n/4) T(n/4) I'(n/4) T(n/4)
TN
T(n/8) T(n/8) +cn/4

Recursion Tree

/ﬂn)\
I'(n/2) I'(n/2)
N AN
I'(n/4) T(n/4) I'(n/4) T(n/4)
TN
T(n/8) T(n/8) +cn/4

I'(n/2)

I'(n/4)

T'(n/4)

Cn

T'(n/2) T'(n/2)
/\ /\
I'(n/4) T(n/4) I'(n/4) T(n/4)

There are logn levels. The “complete” term contributes cnlogn .

Cn

C1l

—+Cn

I'(n/2)

I'(n/4)

T'(n/4)

Cn

T'(n/2) T'(n/2)
/\ /\
I'(n/4) T(n/4) I'(n/4) T(n/4)

T'(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)
e O ©
/N /N
T(1) T(1) T(1) T(1)

We have n terms of 1'(1) at the bottom level. This contributes O(n) .

Cn

sSummary
T(n)=2T(n/2)+ O(n)

T(1) =0(1) base case

The solution to this recurrence is T'(n) = O(nlogn).

The running time of our divide and conquer algorithm for the best
time to buy and sell stock is O(nlogn).

IMergesort

IMergesort

Mergesort is a comparison based sorting algorithm with worst-case running
time ©O(nlogn).

This is optimal for a comparison-based method.
Mergesort is stable but is not in place.

Mergesort is a great example of a
divide and conquer algorithm.

Building Block

The heart of mergesort is merging together two sorted arrays.

Say we have an array of size n where the first half is sorted and the
second half is sorted.

Building Block

The heart of mergesort is merging together two sorted arrays.

Say we have an array of size n where the first half is sorted and the
second half is sorted.

Ve want to merge these to completely sort the array.

Merge Function

vecl

1 1 1

10 mid hi

Let us specify in more detail what the merge function should do:

We are given three iterators 1o < mid < hi into a vector vec.

We are promised that vec is sorted in |[1o,mid), that is from
1o up to but not including mid.

This is called a half-closed interval.

Merge Function

vecl

10 mid hi

We are given three iterators 1o < mid < hi into a vector vec.

We are also promised that vec is sorted in [mid, hi), that is from
mid up to but not including hi .

Merge: Goal

vecl

vecl

After merge the vector should be sorted in the interval [1o,hi).

Merge: Signature

using veclIt = std::vector<int>::iterator;

// Assumptions: lo <= mid <= hi
// Vector is sorted in [lo, mid) and [mid, hi)
// Result: After merge, vector 1is sorted in [lo, hi)

void merge(vecIt lo, vecIt mid, vecIt hi);

veCc

Merge: Signature

using veclIt = std::vector<int>::iterator; <— using declaration

// Assumptions: lo <= mid <= hi
// Vector is sorted in [lo, mid) and [mid, hi)
// Result: After merge, vector 1is sorted in [lo, hi)

void merge(vecIt lo, vecIt mid, vecIt hi);

veCc

Merge: Signature

using veclIt = std::vector<int>::iterator;

// Assumptions: lo <= mid <= hi
// Vector is sorted in [lo, mid) and [mid, hi)
// Result: After merge, vector 1is sorted in [lo, hi)

void merge(vecIt lo, vecIt mid, vecIt hi);

veCc

Merge: Complexity

vec

We can implement merge to run in time ©(hi — 1o) and to use
©(hi — 1o) additional space.

I’'m going to leave this as an exercise.

Now let’s continue designing mergesort using merge as a black box.

IMergesort

How can we sort this vector making use of the merge subroutine!?

(131206319

IMergesort

How can we sort this vector making use of the merge subroutine!?

(131206319

IMergesort

How can we sort this vector making use of the merge subroutine!?

(131206319

l Sort the left
half and the right half.

IMergesort

How can we sort this vector making use of the merge subroutine!?

(131206319

l Sort the left
half and the right half.

l Merge the two
sorted halves.

IMergesort

How can we sort this vector making use of the merge subroutine!?

(131206319

l Sort the left
half and the right half.

IMergesort

How can we sort this vector making use of the merge subroutine!?

(131206319

l Sort the left
half and the right half.

213 (9|7]1]3|6]9

How do we sort the left and right halves?

IMergesort

How can we sort this vector making use of the merge subroutine!?

(131206319

l Sort the left
half and the right half.

213 (9|7]1]3|6]9

How do we sort the left and right halves?

Use mergesort!

Mergesort: D&C

Let’s put mergesort in the context of divide and conquer algorithms.

(131206319

Original problem: sort a vector of size n.

Divide: Sort the first half and sort the second half.

Two subproblems of size roughly n/2.

Mergesort: D&C

Let’s put mergesort in the context of divide and conquer algorithms.

(131206319

Original problem: sort a vector of size n.

Divide: Sort the first half and sort the second half.

Two subproblems of size roughly n/2.

2132|7136 9

Mergesort: D&C

2139 |7]1]3]61]9

Divide: Sort the first half and sort the second half.

Let’s look at the work to Create, Complete, and Combine

Create: The subproblems are the first half and second half of the vector.

Easy! WVe just have to compute the midpoint.

Mergesort: D&C

2139 |7]1]3]61]9

Divide: Sort the first half and sort the second half.

Let’s look at the work to Create, Complete, and Combine

Complete: We don’t have to do any work here.

All the information we need is in solution to the subproblems.

Mergesort: D&C

2139 |7]1]3]61]9

Divide: Sort the first half and sort the second half.

Let’s look at the work to Create, Complete, and Combine.

Combine: Combine solutions to subproblems to solve original problem.
This is done by the merge function!

The combine step is where the main work of mergesort is done.

Mergesort: Code

void mergesort(vecIt begin, vecIt end) { Sort the vector in [begin7 end)
if (end - begin <= 1) {
return;

}

vecIt mid = begin + (end - begin)/2;
mergesort(begin, mid);
mergesort(mid, end);

merge(begin, mid, end);

Mergesort: Code

Let T'(n) be the running time of mergesort when end — begin =n .

volid mergesort(veclt begin, vecIt end) {

if (end - begin <= 1) ({ <+— Base case of the recursion.
return; A vector of size one is already

; sorted.

vecIt mid = begin + (end - begin)/2;

mergesort (begin, mid); ﬂﬁ(l) — C)(l)

mergesort(mid, end);
merge(begin, mid, end);

Mergesort: Code

Let T'(n) be the running time of mergesort when end — begin =n .

volid mergesort(veclt begin, vecIt end) {
1f (end - begin <= 1) {

return;
}
vecIt mid = begin + (end - begin)/2; <+— Create step: Find the midpoint.
mergesort (begin, mid);
mergesort(mid, end); Takes time 0(1) :

merge(begin, mid, end);

Mergesort: Code

Let T'(n) be the running time of mergesort when end — begin =n .

volid mergesort(vecIt begin, vecIt end) {
1f (end - begin <= 1) {
return;

}

vecIt mid = begin + (end - begin)/2;

mergesort (begin, mid); <+«— Sort the left half.
mergesort(mid, end);

Solve the subproblems.

merge(begin, mid, end);

Mergesort: Code

Let T'(n) be the running time of mergesort when end — begin =n .

volid mergesort(vecIt begin, vecIt end) {
1f (end - begin <= 1) {

return;
}
e D o o e Solve the subproblems.
mergesort(begin, mid);
mergesort(mid, end); <— Sort the right half.

merge(begin, mid, end);

Mergesort: Code

Let T'(n) be the running time of mergesort when end — begin =n .

volid mergesort(veclIt begin, vecIt end) {
1f (end - begin <= 1) {

return;
}
T e e Sy Solve the subproblems.
mergesort(begin, mid);
mergesort(mid, end); <— Sort the right half.
merge(begin, mid, end);

These two lines take time

T'(mid — begin) + T'(end — mid)

Mergesort: Code

volid mergesort(veclIt begin, vecIt end) {
1f (end - begin <= 1) {
return;

}

vecIt mid = begin + (end - begin)/2;

mergesort (begin, mid):; :
. {beg) Combine step.

mergesort(mid, end);

merge(begin, mid, end); <“— Merge the sorted intervals

} begin,mid) and [mid, end)

Time O(end — begin).

Mergesort: Code

volid mergesort(veclt begin, vecIt end) {
1f (end - begin <= 1) {

Total time:

return;
' T'(mid — begin
} (S) solve subproblems
vecIt mid = begin + (end - begin)/2; :
mergesort(begin, mid); T(end mld)
mergesort(mid, end): : .
g (m1) —I—O(end — begln) combine

merge(begin, mid, end);

} —I—O(l) create

Mergesort: Running Time

Let us assume the size of the original vector is a power of 2.

Then we have the recurrence
T(n)=2T(n/2)+ O(n)

T(1) =0O(1) base case

Mergesort: Running Time

Let us assume the size of the original vector is a power of 2.

Then we have the recurrence
T(n)=2T(n/2)+ O(n)
T(1) =0O(1) base case

This is the exact same recurrence we had for the buy and sell stock problem.

Mergesort: Running Time

Let us assume the size of the original vector is a power of 2.

Then we have the recurrence
T(n)=2T(n/2) + O(n)
T(1) =0O(1) base case
This is the exact same recurrence we had for the buy and sell stock problem.

The running time of mergesortis O(nlogn).

Mergesort Example

Mergesort: Code

volid mergesort(vecIt begin, vecIt end) {

1f (end - begin <= 1) { base case
return;
}
vecIt mid = begin + (end - begin)/2; create subproblems
mergesort (begin, mid); sort first half
mergesort(mid, end); sort second half
merge(begin, mid, end); combine solutions with merge

mergesort(0, 8)

0

3

|
3

‘Argesort((), 4)

2

mergesort(0, 8)

2

O

3
O

4
0

5
3

1

9

mergesort(0, 8)

o I 2 3 4 5 6 7
‘Argesort((), 4)
Agesort((), 2)

mergesort(0, 8)

o | 2 3 4 5 6 7
(131210631119
‘Argesort((), 4)
(131219
Agesort((), 2)
mergesort (0, 1

return

mergesort(0, 8)

o I 2 3 4 5 6 7
(13121916319
Argesort((), 4)
(131219
Agesort((), 2)
mergesort(0, 1

return

mergesort(0, 8)

o | 2 3 4 5 6 7
‘,,/”’/;;;gesort

Agesort

mergesort (0 ‘1/\ mergesort(1,2)

return return

mergesort(0, 8)

o | 2 3 4 5 6 7
‘,,/”’/;;;gesort

Agesort

mergesort (0 ‘1/\ mergesort(1, 2)

return return

mergesort(0, 8)

0 | 2 3 4 5 6 7
‘Argesort((), 4)
Agesort((), 2)
/ X\ merge(0,1,2)

mergesort(0, 8)

o I 2 3 4 5 6 7
‘Argesort((), 4)
‘Aergesort((), 2)

mergesort(0, 8)

0 I 2 3 4 5 6 7

(131210631119
‘Argesort((), 4)

(131215

mergesort(0, 8)

0 | 2 3 4 5 6 7
‘Argesort((), 4)
/ \ mergesort (2, 4)

mergesort(0, 8)

0 | 2 3 4 5 6 7
‘Argesort((), 4)
/ \ mergesort (2, 4)

mergesort(2, 3

mergesort(0, 8)

o I 2 3 4 5 6 7
‘Argesort((), 4)
/\ mergesort(2,4)

mergesort(2, 3)

mergesort(0, 8)

o I 2 3 4 5 6 7
‘Argesort((), 4)
/\ mergesort(2,4)

mergesort(2, 3) mergesort(3,4)

mergesort(0, 8)

o | 2 3 4 5 6 7
Argesort(@, 4)
/\ mergesort(2,4)

mergesort(2, 3) mergesort(3,4)

mergesort(0, 8)

o I 2 3 4 5 6 7
‘Argesort 0,4)

/\ mergesort(2,4)

mergesort(0, 8)

0 | 2 3 4 5 6 7/
‘Argesort((), 4)
/ N\, mergesort(2,4)

mergesort(0, 8)

0 I 2 3 4 5 6 7
‘Argesort((), 4)
\ nerge(0,2,4

0

|
3

Argesort(@, 4)

O

mergesort(0, 8)

2

(

3
O

4
0

5
3

1

9

mergesort(0, 8)

mergesort(0, 8)

o | 2 3 4 5 6 7
/ mergesort(4, 8)

mergesort(0, 8)

o | 2 3 4 5 6 7
/ mergesort(4, 8)

mergesort(4, 6)

mergesort(0, 8)

o | 2 3 4 5 6 7
/ mergesort(4, 8)

mergesort(4, 6)

mergesort(4, 5)/

6]

mergesort(0, 8)

o I 2 3 4 5 6 7
/ mergesort(4, 8)

mergesort(4, 6)

mergesort(4, 5)/

6]

mergesort(0, 8)

0 | 2 3 4
(6

6 7
3 119

mergesort(4, 8)

mergesort(4, 6)

mergesort(4, 5)/\ mergesort(5, 6)

6]

mergesort(0, 8)

0 | 2 3 4
(6

6 7
3 119

mergesort(4, 6)

mergesort(4, 8)

mergesort(4, 5)/\ mergesort

6]

(9,6)

mergesort(0, 8)

0 | 2 3 4
(6

6
1

mergesort(4, 6)

/
6]

,
9

mergesort(4, 8)

\ merge(4,5,6)

mergesort(0, 8)

o | 2 3 4 5 6 7
/ mergesort(4, 8)

mergesort(4,6)

mergesort(0, 8)

/ \ mergesort(4, 8)

mergesort(4, 6) /\Eergesort

mergesort(0, 8)

/ \ mergesort(4, 8)

mergesort 4’6) /\iﬂergesort(fi,S)

mergesort(6, 7) /

mergesort(0, 8)

/ \ mergesort(4, 8)

/\inergesort(fi, 8)

ergesort(6,7) /

mergesort(0, 8)

/ \ mergesort(4, 8)

/\inergesort(fi, 8)

mergesort(0, 8)

/ \ mergesort(4, 8)

/\iHergesort (6, 8)

mergesort(6,7) /\f‘ﬂergGSOrt

9]

mergesort(0, 8)

/ \ mergesort(4, 8)

/\inergesort(fi, 8)

/ \merge(G, 7,8)

9]

mergesort(0, 8)

o I 2 3 4 5 6 7
/ mergesort(4, 8)

/\mergesort

mergesort(0, 8)

o | 2 3 4 5 6 7
/ mergesort(4, 8)
Nerge (4,6,8)

mergesort(0, 8)

/ mergesort(4, 8)

mergesort(0, 8)

For mergesort to be stable the merge algorithm needs to put equal
values from the left subproblem before those from the right subproblem.

mergesort(0, 8)

/’\

Now the algorithm finishes, and the vector is sorted.

Quicksort

Quicksort

Quicksort is one of the most widely used sorting algorithms in practice.
lts worst-case running time is ©(n?).
The average-case running time, however, is O(nlogn).

Quick sort is comparison based and in place, but not stable.

Like mergesort, quicksort is a divide and conquer algorithm.

Quicksort

vec 01312171631

Step |: Choose a pivot. Let’s take vec|0].

Partition

vec 0131217161319

l partition

313121156 7]9

Step 2: Partition—put the pivot in a position such that
everything to the left is < the pivot

everything to the right is > the pivot

vec

Step 2: Partition

0

3

Partition

1

9

l partition

O

0

(

9

The pivot is now in a valid final position for a sorted array.

vec

0327
313121
quicksort

0

3

Recurse

1

9

l partition

O

6

(

9

quicksort

Step 3: Recursively use quicksort to sort the portion to the left of the pivot
and to the right of the pivot.

Divide And Conquer

Divide: Two subproblems
Sort the elements to the left of the pivot element.

Sort the elements to the right of the pivot element.

Create/Complete/Combine:

Create: The main work in quicksort is to create the subproblems.

This is done with the partition function.

Divide And Conquer

Divide: Two subproblems
Sort the elements to the left of the pivot element.

Sort the elements to the right of the pivot element.

Create/Complete/Combine:

Complete/Combine: No work to be done!

Partition

The main work of quicksort is in the partition function.

The partition function creates the subproblemes.

Let’s look at the signature of the partition function:

using veclIt = std::vector<int>::iterator;
vecIt partition(vecIt begin, vecIt end);

We take two iterators which define the half-closed interval where we work.

We return an iterator which points to final position of the pivot.

Partition

vecIt partition(vecIt begin, vecIt end)

vec D1 3127163 1]9
t t

begin end

The input iterators define a half-closed interval—we want to partition the
elements in this interval.

We use *begin as the pivot element, in this case 3.

vecIt partition(vecIt begin, vecIt end)

vec 0132|7163 1]9 before partition

begin egd
01312 (3[6|7[1[9 after partition
begin T ertd

return iterator to
final pivot position

Partition can be done in place in time ©(end — begin).

Quicksort

Let’s set the implementation of partition aside for the moment and see how
to finish writing quicksort.

volid quicksort(vecIt begin, vecIt end) {

if (end - begin <= 1) { ' base case: vector of size zero or

return; .
} one is already sorted.

veclt pivotIt = partition(begin, end);
quicksort(begin, pivotIt);
quicksort(pivotIt+l, end);

Quicksort

Let’s set the implementation of partition aside for the moment and see how
to finish writing quicksort.

volid quicksort(vecIt begin, vecIt end) {
1f (end - begin <= 1) {

return;
}
vecIt pivotIt = partition(begin, end); <+ Clreate the subproblems.
quicksort(begin, pivotIt);
quicksort(pivotIt+l, end); partition puts the pivot in its
} correct location, pointed to

by pivotIt.

Quicksort

Let’s set the implementation of partition aside for the moment and see how
to finish writing quicksort.

volid quicksort(vecIt begin, vecIt end) {
1f (end - begin <= 1) {
return;

}

vecIt pivotIt = partition(begin, end); <«—— Create the subproblems.
quicksort(begin, pivotlIt);

quicksort(pivotIt+l, end); :
pivotlt

} }

VA
[V

Quicksort

Let’s set the implementation of partition aside for the moment and see how
to finish writing quicksort.

volid quicksort(vecIt begin, vecIt end) {
1f (end - begin <= 1) {
return;

}

vecIt pivotIt = partition(begin, end);

quicksort (begin, pivotIt); <+— recursively solve left subproblem.
quicksort(pivotIt+l, end);

begin pivotlt

v v

A
[V

Quicksort

Let’s set the implementation of partition aside for the moment and see how
to finish writing quicksort.

volid quicksort(vecIt begin, vecIt end) {
1f (end - begin <= 1) {
return;

}
veclt pivotIt = partition(begin, end);

quicksort(begin, pivotIt);
quicksort (pivotIt+l, end); <+— recursively solve right subproblem.

pivotIt + 1 end
v v
=

A

Quicksort: Running Time

Quicksort: Running Time

Let’s assume we are sorting a vector where all elements are distinct.

Quicksort: Running Time

Let’s assume we are sorting a vector where all elements are distinct.

Let T'(n) be the time to sort a vector of size n with quicksort when we
always pick the perfect pivot.

The perfect pivot makes the two subproblems (nearly) equal in size.

Quicksort: Running Time

Let’s assume we are sorting a vector where all elements are distinct.

Let T'(n) be the time to sort a vector of size n with quicksort when we
always pick the perfect pivot.

The perfect pivot makes the two subproblems (nearly) equal in size.

T(n):T<

one subproblem

n— 1

2

1

)+

n—1

2

!

)

other subproblem

+ O(n)

™~

partition:
create subproblems

Quicksort: Running Time

Let T'(n) be the time to sort a vector of size n with quicksort when we
always pick the perfect pivot.

The perfect pivot makes the two subproblems (nearly) equal in size.

T(n):T(

one subproblem

n—1

2

!

)«

1"
2

!

)

other subproblem

+ O(n)

™~

partition:
create subproblems

With T'(1) = O(1) this has the familiar solution T'(n) = ©(nlogn).

Pretty Good Pivot

Say a pivot is pretty good when it creates leads to subproblems that
are both larger than n /10 .

Now let T'(n) be the running time when we always pick a pretty good pivot.
We get a recurrence relation like the following:

T(n) <T(n/10)+T(9In/10) + O(n)

The solution to this recurrence is still T'(n) = O(nlogn).

Usually Pretty Good

Always choosing a pretty good pivot is also unrealistic. Sometimes we
will have bad pivots.

More realistic is that, say, half the time, we will choose a good pivot. This still
leads to an O(nlogn) time algorithm.

Usually Pretty Good

Always choosing a pretty good pivot is also unrealistic. Sometimes we
will have bad pivots.

More realistic is that, say, half the time, we will choose a good pivot. This still
leads to an O(nlogn) time algorithm.

Take n distinct integers and look at the average running time of quicksort
n! over all permutations of them.

Usually the pivots will be pretty good—the average running time of quicksort
over all possible permutations is O(nlogn) .

Quicksort: Worst Case

In the worst case quicksort can take time ©(n?).

A bad case for our version of quicksort is when the vector is already sorted.

L1213 [4]5|6]7]|8

pivot j partition (time @(n — 1))

L1213 (4|5]6]|7]|8

Left subproblem has size 0, right subproblem has size n — 1.

Quicksort: Worst Case

112131451678
el

in crrrect pivot j partition (time ©O(n — 2))
place

11213145 |6]7]|8

Left subproblem has size O, right subproblem has size n — 2.

We only decrease the problem size by one each time.

Quicksort: Worst Case

When the vector is already sorted we only decrease the problem size by
after each round of partition.

The running time is proportional to

(=14 (m—2)+2+41="2"1

After partition we always put at least one element in the correct
position—at most 7 rounds of partition.

The worst-case running time of quicksort is O(n?).

Partition

Lomuto Partition

Several different algorithms have been suggested do the partition step of
quicksort.

The original algorithm of Hoare from 1961 uses two approaching indices.

We will describe a simpler (but slightly slower) algorithm due to Lomuto.

Lomuto Partition

Several different algorithms have been suggested do the partition step of
quicksort.

The original algorithm of Hoare from 1961 uses two approaching indices.

We will describe a simpler (but slightly slower) algorithm due to Lomuto.

2 Most discussions of Quicksort use a partitioning scheme based on two
approaching indices like the one described in Problem 3. Although the
basic idea of that scheme is straightforward. [have always found the
details tricky—I once spent the better part of two days chasing down a
bug hiding in a short partitioning loop. A reader of a preliminary draft
complamed that the standard two-index method is in fact simpler than
Lomuto’s, and sketched some code to make his point; I stopped looking
after [found two bugs.

—Jon Bentley, Programming Pearls

Lomuto Example

begin end

' '
5132|763 1]9

1

leftEnd]

We use *begin as the pivot and initialize 1leftEnd = begin + 1.

The iterator j starts at begin + 1 and runs over the vector.

begin < leftEnd < j partition the vector into three parts in general.

Lomuto Example

begin < leftEnd < j partition the vector into three parts in general.

leftEnd
v
< ¥*begin > xbegin
3 4 t
begln J end

Elements in [begin, leftEnd) are at most the pivot.

Elements in [leftEnd, j) are greater than the pivot.

Elements in [j,end) are still to be processed.

Initialization

begin end
¢ ¢
0132|7163 1]9
1
leftEnd]

Elements in [begin,leftEnd) are at most the pivot. |ust the pivot &.
Elements in [leftEnd, j) are greater than the pivot. Empty &.

Elements in [j,end) are still to be processed. Everything but the pivot &.

for (vecIt j = begin + 1;

}

Lomuto Loop

< *begin begin
'
> xpbegin 5

3

1

leftEnd

if (*j <= *begin) {

}

std: :swap(*leftEnd, *7j);
++leftEnd;

]

J < end; ++3) {

Godbolt Link

end

'

Let’s see why this loop maintains the
Invariant.

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link

< *begin begin end
> *begin 532 (7]16|3]1]9
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , . . .
if (%5 <= *begin) { Let’s see why this loop maintains the
std: :swap(*leftEnd, *7j); invariant.
++leftEnd;

}

)
First iteration: *J < xbegin

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< *begin begin end
' '
> *begin 5132171613109
1
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , .) .
if (%5 <= *begin) { Let’s see why this loop maintains the

std: :swap(*leftEnd, *7j); inval”iant
++leftEnd;
}

)
First iteration: *J < xbegin

VWVe swap, which does nothing in this case.

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< *begin begin end
' '
> *begin 5132171613109
1
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , .) .
if (%5 <= *begin) { Let’s see why this loop maintains the

std: :swap(*leftEnd, *7j); inval”iant
++leftEnd;

}

)
First iteration: *J < xbegin

VWVe swap, which does nothing in this case.

We increment leftEnd .

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link

< xbegin be%in ond
> xbegin 0132171631119
1eftE{§
- f“('f‘f;j*:e::zin . e Let’s see why this loop maintains the
std::swap(*leftEnd, *j); Invariant.

++leftEnd;

}
}

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link

< *begin begin end
> *begin 5132 (7|6(3]1]9
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , . . .
if (%5 <= *begin) { Let’s see why this loop maintains the
std: :swap(*leftEnd, *7j); invariant.
++leftEnd;

}

} . .
Second iteration: *J < *begin

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< *begin begin end
' '
> *begin 513271613109
1
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , .) .
if (%5 <= *begin) { Let’s see why this loop maintains the

std: :swap(*leftEnd, *7j); inval”iant
++leftEnd;
}

} . .
Second iteration: *J < *begin

Ve swap, which again does nothing.

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< *begin begin end
' '
> *begin 513127163109
1
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , .) .
if (%5 <= *begin) { Let’s see why this loop maintains the

std: :swap(*leftEnd, *7j); inval”iant
++leftEnd;

}

} . .
Second iteration: *J < *begin

Ve swap, which again does nothing.
We increment leftEnd .

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link

< *begin begin end
> *begin 51312 (7|6(3]1]9
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , . . .
if (%5 <= *begin) { Let’s see why this loop maintains the
std: :swap(*leftEnd, *7j); invariant.

++leftEnd;

}
}

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link

< *begin begin end
> *begin 51312 (7|6(3]1]9
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , . . .
if (%5 <= *begin) { Let’s see why this loop maintains the
std: :swap(*leftEnd, *7j); invariant.
++leftEnd;

}

} . .
Third iteration: *] > *begin

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< *begin begin end
' '
> *begin 513271613109
1
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , .) .
if (%5 <= *begin) { Let’s see why this loop maintains the

std: :swap(*leftEnd, *7j); inval”iant
++leftEnd;
}

} . .
Third iteration: *] > *begin

No swap, do not increment 1leftEnd.

https://godbolt.org/z/jKecW73sd

for (vecIt j = begin + 1;

}

< xbegin

> xpbegin

if (*j <= *begin) {

}

std: :swap(*leftEnd, *7j);
++leftEnd;

Lomuto Loop

(

7

begin
O 3|2
leftEnd

J < end; ++3) {

Godbolt Link
end
'
60| 3[1]9
T‘
]

Let’s see why this loop maintains the
Invariant.

No swap, do not increment 1leftEnd.

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< *begin begin end
' '
> *begin 5132171613 1/09
el
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , .) .
if (%5 <= *begin) { Let’s see why this loop maintains the

std: :swap(*leftEnd, *7j); inval”iant
++leftEnd;
}

} . .
Fourth iteration: *] > *begin

No swap, do not increment 1leftEnd.

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link

< *begin begin end
> *begin 51312716319
leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) { , . . .
if (%5 <= *begin) { Let’s see why this loop maintains the
std: :swap(*leftEnd, *7j); invariant.

++leftEnd;

}
}

https://godbolt.org/z/jKecW73sd

for (vecIt j = begin + 1;

}

< xbegin

> xpbegin

if (*j <= *begin) {

}

std: :swap(*leftEnd, *7j);
++leftEnd;

Fifth iteration:

Lomuto Loop

(

begin
;
O] 3|2
///”'
leftkEnd

J < end; ++3) {

*j < xbegin

Godbolt Link
end
'
6|3 1]9
?
]

Let’s see why this loop maintains the
Invariant.

https://godbolt.org/z/jKecW73sd

for (vecIt j = begin + 1;

}

< xbegin

> xpbegin

if (*j <= *begin) {

}

std: :swap(*leftEnd, *7j);
++leftEnd;

Fifth iteration:

Lomuto Loop

(

begin
;
O] 3|2
///”'
leftkEnd

J < end; ++3) {

*j < xbegin

Godbolt Link
end
'
6|3 1]9
?
]

Let’s see why this loop maintains the
Invariant.

Swap *leftEnd and *].

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< kbegin begin end
' !
> *begin 5131213167109
leftEnd J

for (vecIt j = begin + 1; j < end; ++7j) {

if (»3 < *begin) { After the swap we have xleftEnd < xbegin

std: :swap(*leftEnd, *3j); and *J > *begin .
++leftEnd;

}
}

Increment leftEnd.

https://godbolt.org/z/jKecW73sd

for (vecIt j = begin + 1;

}

< *begin

> xpbegin

if (*j <= *begin) {

}

std: :swap(*leftEnd, *7j);
++leftEnd;

Fifth iteration:

J < end; ++3) {

Lomuto Loop

3

begin
;
O] 3|2
///”'
leftkEnd

*j < xbegin

Increment leftEnd.

end

'

Godbolt Link

After the swap we have x1eftEnd < xbegin
and *Jj > xbegin .

https://godbolt.org/z/jKecW73sd

for (vecIt j = begin + 1;

}

< *begin

> xpbegin

if (*j <= *begin) {

}

std: :swap(*leftEnd, *7j);
++leftEnd;

Fifth iteration:

J < end; ++3) {

Lomuto Loop

3

begin
;
O] 3|2
///”'
leftkEnd

*j < xbegin

Swap *leftEnd and *].
Increment 1leftEnd.

end

'

Godbolt Link

After the swap we have x1eftEnd < xbegin
and *Jj > xbegin .

https://godbolt.org/z/jKecW73sd

for (vecIt j = begin + 1; j < end; ++3j) {

}

< xbegin

> *xbegin

if (*j <= *begin) {

}

std: :swap(*1leftEnd, *7j);
++leftEnd;

Lomuto Loop

begin

'
O

2|3

6

7

leftEnd

end

'

Godbolt Link

https://godbolt.org/z/jKecW73sd

Lomuto Loop

< *begin begin end
' '
> *begin 5131213(6[7]1]9
leftEnd J

for (vecIt j = begin + 1; j < end; ++3j) {
if (*j <= *begin) {
std: :swap(*leftEnd, *j);
++leftEnd;

}

} ° °
Sixth iteration: *J < *begin

Swap, and increment leftEnd.

Godbolt Link

https://godbolt.org/z/jKecW73sd

for (vecIt j = begin + 1; j < end; ++3j) {

}

< xbegin

> *xbegin

if (*j <= *begin) {

}

std: :swap(*1leftEnd, *7j);
++leftEnd;

Lomuto Loop

begin

'
O

3|1

(

7

leftEnd

end

'

Godbolt Link

https://godbolt.org/z/jKecW73sd

Lomuto Loop

< *begin be%in
> xpbegin 513121311

(

7

leftEnd

for (vecIt j = begin + 1; j < end; ++7j) {
if (*j <= *begin) {

}

}

std: :swap(*leftEnd, *7j);
++leftEnd;

Seventh iteration: *j > *begin

No swap, do not increment 1leftEnd.

end

'

Godbolt Link

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link

< *begin begin end
' '
> xbegin 51312(311]71]16/|9
leftEnd J

for (vecIt j = begin + 1; j < end; ++7j) {

it (%5 <= *begin) | Finally, ; end and the for loop

std: :swap(*leftEnd, *7j); terminates.
++leftEnd;

}
}

https://godbolt.org/z/jKecW73sd

Lomuto Loop Godbolt Link
< *begin begin end
' '
> *begin 5131213[1(71]61]9
leftEnd J
for (vecIt j = begin + 1;] < end; ++3j) { . .
(£ (3 <= sheaim) (: Finally, j end and the for loop

std: :swap(*leftEnd, *7j); terminates.
++leftEnd;

}
}

WVe still need to check two things: why the loop maintains the invariant in
general, and what the invariant gives us at the end of the loop.

https://godbolt.org/z/jKecW73sd

Maintenance

< *begin begin end

' '

>ovestn R T [[]

7 f

leftEnd J

for (vecIt j = begin + 1; j < end; ++J) {
if (*j] <= *begin) {
std: :swap(*leftEnd, *1): In general, there are two cases:
++leftEnd;

}
}

Maintenance

< *begin begin end

' '

" shestn

7 f

leftEnd J
for (vecIt j = begin + 1; j < end; ++3j) {
if (*j <= *begin) {
atd: :awap(*leftEnd, *§); In general, there are two cases:

++leftEnd;

}
}

Case |: *J > xbegin

No swap, no increment of leftEnd.

Maintenance

< *begin begin end

' '

" wbesin

~ f

leftEnd]
for (vecIt j = begin + 1;] < end; ++3j) {
if (*j <= *begin) { . . .
atd: :awap(*leftEnd, *§); The invariant still holds.

++leftEnd;

}
}

Case |: *J > xbegin

No swap, no increment of leftEnd.

Maintenance

< *begin begin end

' '

" shestn
- j
J

leftEnd

for (vecIt j = begin + 1; j < end; ++3j) {
if (*j <= *begin) {
atd: :awap(*leftEnd, *§); In general, there are two cases:

++leftEnd;

}
}

Case 2: *]J < xbegin
Swap *]J and xleftEnd.

Maintenance

< *begin begin
'

> *xbegin

<

7

leftEnd

for (vecIt j = begin + 1; j < end; ++j) {

}

if (*J <= *begin) {
std: :swap(*leftEnd, *7j);
++leftEnd;

}

Case 2: *] < *begin

Increment leftEnd and J.

end

Maintenance

< *begin begin end
' '
> xpbegin < >
7 !
leftEnd J

for (vecIt j = begin + 1;] < end; ++3j) {
if (*j <= *begin) { . . .
atd: :awap(*leftEnd, *§); The invariant still holds.

++leftEnd;

}
}

Case 2: *]J < xbegin

Increment leftEnd and J.

Termination

begin end

' '
5132 [3[1[7[6]9

leftEnd]

Elements in [begin, leftEnd) are at most the pivot.

Elements in [leftEnd, j) are greater than the pivot.

Elements in [j,end) are still to be processed. Empty &.

VVe have now partitioned the vector.

Put Pivot 1n Its Place

begin end

' '
5132 (3[1[7[6]9

leftEnd]

std: :swap(*begin, *(leftEnd-1));
return leftEnd - 1;

If we put the pivot in position 1leftEnd — 1 then it is less than everything to
its right, and greater than or equal to everything to its left.

Put Pivot 1n Its Place

begin end

' '
113[2[3[5|7]|6]9

leftEnd]

std: :swap(*begin, *(leftEnd-1));
return leftEnd - 1;

This is a valid final position for the pivot in a sorted vector.

We then return the pivot position 1leftEnd — 1.

Running Time codbolt Link

veclt lomutoPartition(vecIt begin, vecIt end) {
vecIt leftEnd = begin + 1;
for (vecIt j = begin + 1; j < end; ++j) {
if (*j <= *begin) {
std: :swap(*leftEnd, *7j);
++leftEnd;
}
}
std: :swap(*begin, *(leftEnd-1));
return leftEnd - 1;
}

The body of the for loop does a constant amount of work.
The running time is ©(end — begin).

This is the bound we used in the previous lecture to argue quicksort
has ©(n*) worst-case complexity and ©(nlogn) average-case complexity.

https://godbolt.org/z/jKecW73sd

