Plan For Today

Review Quiz

Insertion Sort

How should we measure the complexity of an algorithm? (Big Oh)
Properties of sorting algorithms

Mergesort

Quicksort (if time)



Big Oh



Big Oh Motivation

VVe want a way to talk about how much time an algorithm takes to run as
a function of the input size.

How much data can we process with this algorithm?

Can we sort a vector of a million elements?



Simple Definition

We could say that one algorithm is faster than another if it always runs in less
time, for every input length.

If f.g:11,2,3,...} — {1,2,3,...} describe the running times as a function of
the input length

f<g < f(n) <g(n) for every n=1,2,3,...

What is the shortcoming of this definition!?



600000

500000

400000

300000

200000

100000

Small Size Effects

200

B benchmarkUnorderedSet benchmarkDoubleFor

400 600 800

ratio (CPU time / Noop time)
Lower is faster

Which algorithm is better?

1000

Leetcode 217:
Contains Duplicate

1200



1400000000

1200000000

1000000000

800000000

600000000

400000000

200000000

Small Size Effects

B benchmarkUnorderedSet

benchmarkDoubleFor

Leetcode 217:
Contains Duplicate

.——.—————.—_—_—_-__.

10000

20000 30000 40000

ratio (CPU time / Noop time)
Lower is faster

How about now?

50000

60000

70000



LARGE problem sizes

Big Oh ignores small size effects.

It only cares about running time as the problem size becomes VERY big
(goes to infinity).

New Attempt:

If f.9:11,2,3,...} = 1{1,2,3,...} describe the running times as a function of
the input length, say that

J < g <= thereis some size ng such that f(n) < g(n) for all n > ny.




Ignore Constant factors

The second simplification big Oh makes is that it ignores constant factors.

14+24+---4+n/2+n/24+1)+---+(n—-1)+n

We had to do some work to compute this sum

2

It is much easier to see that it is at most n° and at least n°/4 .

Without knowing tiny details of an algorithm’s implementation and the
machine it is running on we can’t hope to predict running time better than
up to a constant factor.



Relaxation 2

If f.g:11,2,3,...} = {1,2,3,...} describe the running times as a function of
the input length

We forgive constant factors: f < g if and only if for some constant ¢ > 0

f(n) <c-g(n) for all large enough n .

This is exactly the definition of big Oh. In this case we say f(n) = O(g(n)) .



Suificient Condition

n
Look at the ratio ‘;((ni . If there is a constant ¢ such that
po F(n) <.
n— 00 g(n)

then f(n) =0(g(n)) .



Questions

True or False: 100n = O(n)



Questions

True or False: logn = O(n)



Questions

n2

1000

O(n)

True or False:



Questions

True or False: nlogn = O(n)



Lower Bounds

Unfortunately, people have occasionally been using the O-notation for
lower bounds, for example when they feject a particular sorting method
"because its running time is O(ne) ."" I have seen instances of this in
print quite often, and finally it has prompted me to sit down and write

a Letter to the Editor about the situation.

Donald E. Knuth, "Big Omicron and Big Omega and Big Theta", 1976.



Lower Bounds

Unfortunately, people have occasionally been using the O-notation for

lower bounds, for example when they feject a particular sorting method

"because its running time is O(ne) ."" I have seen instances of this in
print quite often, and finally it has prompted me to sit down and write
a Letter to the Editor about the situation.

Donald E. Knuth, "Big Omicron and Big Omega and Big Theta", 1976.

In computer science, selection sort is an in-place comparison sorting algorithm. It has an O(nz) time

complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion
sort. Selection sort is noted for its simplicity and has performance advantages over more complicated

algorithms in certain situations, particularly where auxiliary memory is limited.

Wikipedia, Today



Big Omega
VVe need a way to talk about lower bounds on running time.

f =g if and only if there is constant ¢ > 0 such that

f(n) >c-g(n) for all large enough n .

This is exactly the definition of big Omega. In this case we say f(n) = Q(g(n)) .

f f(n) =Q(g(n)) and f(n) = O(g(n)) then we say f(n) = O(g(n)) .



Questions

True or False: nlogn = Q(n)



Questions

True or False: n = Q(n*)



Usage

cheat sheet

Caveats:

|) Don’t care about constant factors

f(n) = Qgn)) | “f(n) > g(n)” 2) Don’t care about behaviour for small n.

On the internet, when people use O(:) they almost always mean O(.).



Common functions

Complexity Example

O(1)

O(logn)

O(n)

O(nlogn)

O(n°)




Theta vs. Problem Size

n O(1) O(logn) | O(n) O(nlogn) O(n?)
10 1 ns 3 ns 10 ns 30 ns
100 1 ns 6 ns 600 ns
1,000 1 ns 10 ns
10,000 1 ns 13 ns
100,000 1 ns 16 ns
1,000,000 1 ns 20 ns

one operation per nanosecond

O(n°)




Sorting



Properties of Sorting Algos

Comparison Based:

In Place:

Stable:



IMergesort



IMergesort

Mergesort is a comparison based sorting algorithm with worst-case running
time ©O(nlogn).

This is optimal for a comparison-based method.

Mergesort is stable but is not in place.

Mergesort is a great example of a divide and conquer algorithm.



Merge Function

The heart of mergesort is merging together two sorted arrays.

Say we have an array of size n where the first half is sorted and the
second half is sorted.

Ve want to merge these to completely sort the array.



Mergesort: Code

volid mergesort(veclt begin, vecIt end) {
1f (end - begin <= 1) {
return;

}

vecIt mid = begin + (end - begin)/2;
mergesort (begin, mid);
mergesort(mid, end);

merge(begin, mid, end);



Mergesort: Running Time

Let us assume the size of the original vector is a power of 2.

Then we have the recurrence
T(n)=2T(n/2) + O(n)
T(1) =0O(1) base case
This is the exact same recurrence we had for the buy and sell stock problem.

The running time of mergesortis O(nlogn).



