Hash Tables

Contains Duplicate

Let’s go back to the contains duplicate problem.

The input is a vector of integers and we want to know if any integer appears
more than once.

We can solve this problem with any data structure that lets us do the
operations of:

insert(x) —add x to the data structure.

contains(x)—check if X is present in the data structure.

This is the bread and butter of a hash table.

Dictionary ADT

A hash table implements the dictionary abstract data type:

A < Dict() Create an empty dictionary.
A.insert(x) Add x to the dictionary.
A.contains(x) Return if X is in the dictionary or not.

A.erase(x) Remove x from the dictionary.

First Idea

Let’s say that the input vector nums has size 1(0° and we are promised
that the entries of the vector satisfy 0 < nums[i] < 10.

We could initialize a boolean vector present of size 10° to all false.

VVe make one pass through nums like this:

for (int X : nums) {
1f (present[x]) {

return true;

}

present|[x] = true;

}

This code exceeds the time limit on Leet Code!

Problem

The problem is that we are initializing a huge vector present of size 10°

As the input nums has size at most 10° , most entries in present will
never be touched.

Can we make use of this fact!?

Let’s try to get by with using a smaller vector to store the entries we have
seen.

Second Idea

Let’s say we can only afford to initialize a vector of size 10° .

As the input nums has size at most 10°, this is still 10 times the number
of values we need to store.

Now we need a way to map a value 0 < nums|i] <= 10" toan
index 7 with 0 <9 < 10°.

We can do this with the modulus function.

index = x % SIZE

Implementation

bool containsDuplicate(std::vector<int>& nums) ({

GOdbOIt Iinl(std::size t SIZE = 999'863; e

std::vector<bool> present(SIZE);

for (int x : nums) {

std::size t index = x % SIZE;
if (present[index]) {

return true;

)

present[index] = true;

}

return false;

This code now passes all the Leet Code tests™!

*Code on slide is simplified assuming x > (), see Godbolt link for code passing
Leet Code tests.

https://godbolt.org/z/4sPEscjfP

Issue

bool containsDuplicate(std::vector<int>& nums) ({
std::size t SIZE = 999'863;

std: :vector<bool> present(SIZE);

Godbolt link

for (int x : nums) {
std::size t index = x % SIZE;
if (present[index]) {

return true;

)

present[index] = true;

}

return false;

}

With this code we are getting very lucky!

If there are two integers X 7 ¥ in the input with X Y% SIZE =y % SIZE we
would say there is a duplicate when there might not be.

https://godbolt.org/z/4sPEscjfP

Collisions

We have SIZE buckets labeled by integers 0,1,2,...,SIZE — 1.

Given a non-negative integer x, we place it in bucket x %0 SIZE.

5% SIZE -+ 1 Two distinct integers going into the

\ / same bucket is a collision.

Why Use The Modulus?

) WVe need a function that maps non-negative integers to buckets.

A function which maps some data type to the label of a bucket is called a
hash function.

Why Use The Modulus?

2) A nice property of the modulus function is that when we choose a non-negative integer x
at random, X Y% SIZE is distributed uniformly over the buckets.

=P This reduces the chance of collisions.

D% SIZE + 2 6« SIZE — 1
»x SIZE + 1 l Ox SIZE — 2

O *x SIZ

L]

Why Use The Modulus?

3) A hash function should also be fast to compute, and the modulus function is relatively
fast to compute.

5% SIZE + 2 6« SIZE — 1
5% SIZE + 1 l 6« SIZE — 2 l

v

O * SIZ.

L]

v

SIZE — 2 SIZE — 1

LLoad Factor

We don’t want to have too many buckets. If we are going to store /N numbers, we would
like the number of buckets to be, say, 2/V .

The ratio of the number of numbers stored to the number of buckets is called the load
factor.

With a constant load factor, we expect to have collisions. Ve need a way of dealing with
them.

Collision Handling

Rather than just saying if a bucket has a number or not, let's remember all the numbers in
the bucket.

Each bucket can have its own data structure, say a deque, to store all the elements in that
bucket.

For each new element we first compute what bucket it should be in. We then add it to the
front of the deque stored at that bucket.

Collision Handling

For each new element we first compute what bucket it should be in. Ve then add it to the
front of the deque stored at that bucket.

SIZE 4 1

SIZE — 2

Collision Handling

For each new element we first compute what bucket it should be in. Ve then add it to the
vector stored at that bucket.

HD*x SIZE — 1

Collision Handling

For each new element we first compute what bucket it should be in. Ve then add it to the
vector stored at that bucket.

10« STZE + 1

SIZE —2 SIZE — 1

HD*x SIZE — 1

Collision Handling

For each new element we first compute what bucket it should be in. Ve then add it to the
vector stored at that bucket.

SIZE —2 SIZE — 1

10« STZE + 1
SIZE + 1

HD*x SIZE — 1

Hash Table

We have now built a hash table.

The basic components are:

|) Hash function to map the data to an array index.

2) Mechanism to handle hash collisions.

The method of having a data structure at each bucket to store the elements mapped there
is called separate chaining.

Homemade Hash Table

Let’s try this again on contains duplicate. Godbolt Link

bool containsDuplicate(std::vector<int>& nums) {

const std::size t SIZE {2*nums.size()}; — Ioad fa_ctor' Of |/2
std: :vector<std::deque<int> > buckets(SIZE);
for (int x : nums) {

std::size t bucket = x % SIZE;

auto iter = std::find(buckets[bucket].begin(),

buckets[bucket].end(), Xx);
if (iter != buckets[bucket].end()) {
return true;

}
buckets[bucket].push front(x);

}

return false;

https://godbolt.org/z/516of3rEP

Homemade Hash Table

Let’s try this again on contains duplicate.

bool containsDuplicate(std::vector<int>& nums) {
const std::size t SIZE {2*nums.size()}; our haSh table iS a
std: :vector<std::deque<int> > buckets(SIZE); <
for (int x : nums) { vector of deques
std::size t bucket = x % SIZE;
auto iter = std::find(buckets[bucket].begin(),

buckets[bucket].end(), X);
if (iter != buckets[bucket].end()) {

return true;

}
buckets[bucket].push front(x);

}

return false;

Homemade Hash Table

Let’s try this again on contains duplicate.

bool containsDuplicate(std::vector<int>& nums) {
const std::size t SIZE {2*nums.size()};
std: :vector<std::deque<int> > buckets(SIZE);
fox: (Hok x s ame)) f, compute the bucket
std::size t bucket = x % SIZE; e
auto iter = std::find(buckets[bucket].begin(), (assuming X > O)
buckets[bucket].end(), Xx);
1f (iter != buckets[bucket].end()) {

return true;

}
buckets[bucket].push front(x);

}

return false;

Homemade Hash Table

Let’s try this again on contains duplicate.

bool containsDuplicate(std::vector<int>& nums) {
const std::size t SIZE {2*nums.size()};
std: :vector<std::deque<int> > buckets(SIZE);
for (int x : nums) {
std::size t bucket = x % SIZE;

auto iter = std::find(buckets[bucket].begin(), | dO Iinea—r SearCh to

buckets [bucket].end(), X); see if x already in bucket
if (iter != buckets[bucket].end()) {

return true;

}
buckets[bucket].push front(x);

}

return false;

Homemade Hash Table

Let’s try this again on contains duplicate.

bool containsDuplicate(std::vector<int>& nums) {
const std::size t SIZE {2*nums.size()};
std: :vector<std::deque<int> > buckets(SIZE);
for (int x : nums) {
std::size t bucket = x % SIZE;
auto iter = std::find(buckets[bucket].begin(),
buckets[bucket].end(), Xx);
if (iter != buckets[bucket].end()) { |f X iS N the bUCket,

—
return true

return true;

}
buckets[bucket].push front(x);

}

return false;

Homemade Hash Table

Let’s try this again on contains duplicate.

bool containsDuplicate(std::vector<int>& nums) {

const std::size t SIZE {2*nums.size()};

std: :vector<std::deque<int> > buckets(SIZE);

for (int x : nums) {
std::size t bucket = x % SIZE;
auto iter = std::find(buckets[bucket].begin(),

buckets[bucket].end(), Xx);

1f (iter != buckets[bucket].end()) {

return true;

} . .
buckets[bucket].push front(x); — OtherWISe, add It tO

) the front of the bucket

return false;

Homemade Hash Table

Let’s try this again on contains duplicate.

bool containsDuplicate(std::vector<int>& nums) {
const std::size t SIZE {2*nums.size()};
std: :vector<std::deque<int> > buckets(SIZE);
for (int x : nums) {
std::size t bucket = x % SIZE;
auto iter = std::find(buckets[bucket].begin(),

buckets[bucket].end(), Xx);
if (iter != buckets[bucket].end()) {

return true;

}
buckets[bucket].push front(x);

} .
T | if never found a

) duplicate, return false

Eifficiency

Let’s focus on the contains function of our homemade hash table.

contains(x)

, - A
: /5 RIS R X

Step |: compute hash(x) in constant time.

Eifficiency

Let’s focus on the contains function of our homemade hash table.

contains(x)

SIZE — 2 SIZE — 1

Step 2: linear search through elements stored
at the bucket.

time proportional to size of the
bucket.

Eifficiency

The complexity of contains is proportional to how many elements are stored in a bucket.
This is why we want a hash function which evenly distributes the data across the buckets.

In the worst-case, all the inputs are mapped to the same bucket! Then our hash table
degrades to a deque and contains takes worst-case time O(n) .

To argue a hash table has good performance we need to make some assumption about the
Inputs.

Simple Uniform Hashing

Simple Uniform Hashing (SUH): Any given element is equally likely to hash to any of
the SIZE buckets.

This is true under modular hashing when the elements are random non-negative integers.
With SUH, after inserting . elements, the expected size of each bucket is n/SIZE .

With a constant load factor, under SUH the average time taken by contains is constant.

Insertion

There are several additional considerations that go into the running time of hash table
Insertion.

* |s the hash table of fixed size or is it dynamically resized!?

To dynamically resize we can use an array doubling technique.
Then we can only hope to get constant amortized insertion time.
* Do we search for the element before inserting?

Ve may want to so that we do not have duplicate elements, or to keep
records with equal keys grouped together.

In a fixed-size hash table that does not search before insertion we can achieve worst-case
constant time insertion.

Hash Table in C++

Finally, let’s see how to solve contains duplicate using a hash table in the standard library.
We can use std :: unordered_setin the library < unordered_set >.

This maintains a set of unique keys—if you try to insert the same key again nothing happens.

bool containsDuplicate(std::vector<int>& nums) { Godbolt Link

std: :unordered set<int> setto {};

for (int x : nums) {
if (setto.contains(x)) {
return true;

}

setto.insert(x);

}

return false;

https://godbolt.org/z/Mj3MzfrTs

Hash Tables in C++

Hash tables in C++ are required by the standard to store elements in buckets, and that
elements that hash to the same value are kept in the same bucket.

This essentially describes a separate chaining implementation.

Bucket interface

begin(size type) (C++11) returns an iterator to the beginning of the specified bucket
cbegin(size type) (public member function)

returns an iterator to the end of the specified bucket

(public member function) Cpprefe rence

returns the number of buckets
(public member function)

returns the maximum number of buckets
(public member function)

returns the number of elements in specific bucket
(public member function)

returns the bucket for specific key
(public member function)

end{s;z‘e type) (C++11)
cend(size type)

bucket_ count (C++11)
max_bucket_count (C++11)
bucket size (C++11)

bucket (C++11)

In std :: unordered_set of contains and erase take average case constant time, and insert
takes amortized average case constant time, under the input assumption mentioned earlier.

They have worst-case running time ©(n).

https://en.cppreference.com/w/cpp/container/unordered_set

Valid Parentheses

Valid Parentheses

Leetcode 20 (easy, Blind75) Valid Parentheses:

Given a string over the 6 characters ()[]{}, determine if it is a valid
parenthesization.

Examples:
Ol valid
(O valid
YOI invalid: first closing } has no partner

{[}] invalid: closing } is matched by [

Valid Parentheses

Leetcode 20 (easy, Blind75) Valid Parentheses:

Given a string over the 6 characters ()[]{}, determine if it is a valid
parenthesization.

Formal definition:

The empty string is valid.

If s is valid then (s),|s|,{s} are valid.

If S,T are valid then the concatenation st is valid.

Key Idea

Once we find a valid substring, we can remove it from the string. The original
is valid if and only if the remainder is.

Examples:
(1) — (0)
valid still valid

({1} — [0}

invalid still invalid

Easy Valid Substrings

The easiest valid substrings to find are an opening symbol followed by a
closing symbol of the same type.

Examples: () {} []

If an opening symbol is followed by a closing symbol of a different type,
we immediately know the string is invalid.

Example: A valid string cannot contain the substring (}

First Algorithm

This suggests a first algorithm:

Go through the string looking for an opening symbol immediately
followed by a closing symbol.

If they match, remove them. If they don’t match, return invalid.

Repeat until the string is empty. If you end up with the empty string,
return valid.

Example

First pass:

(Or)

Example

First pass:

(O40)
l

(1)

Example

First pass:

(1)

(1)

Example

Second pass: ({})

0

Example

Third pass:

0
l

empty string

VWVe have reached the empty string, so we return valid.

Eificiency

This algorithm can be slow!

(O

On a valid string like this of size 12 we have to make n /2 passes.

Maybe if we remember some information along the way, we don’t have
to start back at the beginning after each pass!?

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

Read Symbol: (

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

Read Symbol:

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

Read Symbol:

. matches the most recent

opener.

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ }) - ({ })

Read Symbol:

. Remove matched pair from the string.

<4— in the new string, this is the most recent opener.

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

Read Symbol: {

<4— in the new string, this is the most recent opener.

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

Read Symbol: {

<€+—— most recent opener

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

Read Symbol:

<€+—— most recent opener

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

L t
. «— MO TEEET Read Symbol:
opener

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({ })

MOSt recent
h °
. opener Read Symbol:

Closing symbol. Does it match most recent opener?

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Q) — @
most recent |
D — opener Read Symbol:
Removing matching pair.

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({})

Read Symbol: }
most recent opener
in new string

Closing symbol: does it match most recent opener?

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: ({}) — ()
Read Symbol: }

(mos.t recent c?pener
IN New string

Remember the openers

Goal: Remember the most recent opening symbol we have seen dynamically,
as we modify the string by removing matching pairs.

Example: () —» empty string!

Read Symbol:)

(mos.t recent c?pener
IN New string

sSummary

Ve keep at data structure with the most recent opening symbol we have
seen at the top.

For each closing symbol we read, we check if it matches the top opening
symbol.

If not then we return invalid.
If so, then we remove the top opening symbol from the data structure.

The new top symbol is the most recent opening symbol read in the
new string after removing the matched pair.

sSummary

Ve keep at data structure with the most recent opening symbol we have
seen at the top.

For each closing symbol we read, we check if it matches the top opening
symbol.

If hot then we return invalid.

If so, then we remove the top opening symbol from the data structure.

If after processing the last symbol in the string the data structure is empty
we return valid.

Eificiency

This algorithm just makes one pass through the input: the running time

is O(n) .

(O

On an input like this of size 1 we have to remember 71./2 symbols.

The worst-case memory use is O(n) as well.

Abstract Data Type

What operations did we need to perform for this algorithm to work!?

We wanted to add items to our collection of values and keep the most
recently added item on top.

We wanted to check the value of the top item.

We wanted to remove the top item. Then the second most recently added
item became the top item.

This ADT is called a stack!

Stack

A < Stack()
A.push(x)
A.top()

A.pop()

A.size()

Stack ADT

Creates an empty stack
Add = to A.

Return the most recently added item in A .

Remove the top element from A .

Return the number of elements in A .

Stack ADT: push

The push operation is how we add items to a stack:

We picture the stack growing "upwards".

Pushed items are added to the top of the stack.

{
{ {
I

push (push { push {

Sstack ADT: top

The top operation returns the element at the top of the stack.

: top returns {

{ top returns [

Stack ADT: pop

The pop operation removes the top element from the stack.

{ pop
(| — A stack has Last In First Out (LIFO)

behavior.
|
{ pop {
((

Stack ADT

We have used the same names for the operations as in std::stack
image from https://en.cppreference.com/w/cpp/container/stack

Element access

accesses the top element

top (public member function)
Capacity
checks whether the underlying container is empty
empty s
(public member function)
. returns the number of elements
size
(public member function)
Modifiers
push inserts element at the top

(public member function)

constructs element in-place at the top
(public member function)

removes the top element
(public member function)

emplace (C++11)

pop

https://en.cppreference.com/w/cpp/container/stack

Stack Implementation

The ADT of a stack is a subset of that of a resizable array.

Turn the stack on its side:
pop-_back

—

518 (0](11(22]
push_back

Then push and pop are exactly like push_back and pop back.

We can implement top by A.get(A.size() —1).

C++ std::stack

The standard library implements a stack in std::stack.

This is a container adaptor: just a thin wrapper around another container
like std::vector.

You can specify which container you would like std::stack to use, the
default is a std::deque.

Stack in Practice

The downside of a stack is that we cannot iterate through the elements
without popping them off, thereby modifying the stack.

This can make debugging difficult.

In practice, with std::stack we give up operations compared to a
std::vector, without gaining any performance benefits.

The only advantage is to communicate to readers of your code "l only
use the reduced functionality of a stack here”.

When | am coding | will usually just use a std::vector instead.

Queue

The dynamics of a queue is familiar from waiting in line.

ot Iy ™

/ AN

pop items push items
here here

We add items to the back of the line, and remove them from the front.

This has First In First Out (FIFO) behavior.

A < Queue()
A.push(x)
A.front()

A.pop()

A.size()

Queue ADT

Creates an empty queue

Add = to A.

Return the item oldest item in A .

Remove the front element from A .

Return the number of elements in A .

Queue Implementation

The ADT of a queue is a subset of that of a deque or linked list.

front

Queue

push(z)

11

back

29| «— push_back(x)

Deque
push_back(x)

Queue Implementation

The ADT of a stack is a subset of that of a deque or linked list.

front back

get(0) — |0 | 8|0 |11]22

Queue Deque
front() get(0)

Queue Implementation

The ADT of a stack is a subset of that of a deque or linked list.

front back

pop_front() — |5 | 8 | 0 |11(22

Queue Deque
pop() pop-front()

C++ std::queue

The standard library implements a queue in std::queue.

As with std::stack, this is a container adaptor: just a thin wrapper around
another container, either std::deque or std::list.

Using std::queue we give up operations compared to a std::deque, without
any gain in efficiency.

It can also make our program hard to debug as we cannot see what is
in the queue without destroying it.

