Graphs

Graphs

Anatomy of a Tree

Priority Queue

What is a priority queue!

Priority Queue

What is a priority queue?

In a priority queue elements are organised by priority.

Priority Queue

What is a priority queue?
In a priority queue elements are organised by priority.

Pop on a (max) priority queue removes the element with highest priority.

Priority Queue

What is a priority queue?
In a priority queue elements are organised by priority.

Pop on a (max) priority queue removes the element with highest priority.

Think about a to-do list. A queue or stack is not the best model for a to-do
list.

Priority Queue

What is a priority queue?
In a priority queue elements are organised by priority.

Pop on a (max) priority queue removes the element with highest priority.

Think about a to-do list. A queue or stack is not the best model for a to-do
list.

VVe want our to do list to tell us the next task that is due,
regardless of when this task was entered into the to do list.

Heap

Ve can implement a priority queue via a binary heap.

What is a binary heap!

Heap

Ve can implement a priority queue via a binary heap.

What is a binary heap! c

Min binary heap example: @

5 0 O

22

Invariants

Invariants are properties that are always satisfied by a data structure.

Proper operation of the data structure depends on the invariants holding.

These invariants have to be maintained in modifying (e.g. inserting or removing
elements) from the data structure.

What invariants does a min heap satisfy?

Complete binary tree

In 2 complete binary tree, every layer is totally filled except possibly the
bottom one, which is filled from the left.

complete not complete not complete

A complete binary tree with 7 nodes has height logn|.

Min Heap Property

Min Heap Property: The key stored at each node is at most the keys of its
children.

This guarantees that the minimum key is at c

the root.

5 0 O

22

Operations

What operations does a min heap support!?

hoNo 6
®

Peek (Top)

10)
0 ;@Y@
22)

Insert (Push)

Let's insert a new key into our min heap.

o

Remove the minimum (Pop)

Now let's see how to remove the minimum element in a min heap.

o

Remove the minimum

Now let's see how to remove the minimum element in a min heap.

R

EENEDNEEE

A nice feature of heaps is that they are
relatively simple to implement.

We can represent the heap by
a vector. \ \

22

Complexity

What is the complexity of our 3 operations on a min heap?

peek:
Insert: @
o oXofh6

22

remove_min:

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

To sort the vector from smallest to largest, it is best to use a max heap.

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

To sort the vector from smallest to largest, it is best to use a max heap.

In 2 max heap the key at a node is not smaller than the keys of its children.

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

To sort the vector from smallest to largest, it is best to use a max heap.

In 2 max heap the key at a node is not smaller than the keys of its children.

In 2 max heap, the root holds the largest element.

Heapsort

Heapsort consists of two phases. In the first phase we create a max heap
with the elements of the vector.

Ve grow a heap by inserting each
element of the vector into it.

Heapsort

Heapsort consists of two phases. In the first phase we create a max heap
with the elements of the vector.

Ve grow a heap by inserting each
element of the vector into it.

Heapsort

Heapsort consists of two phases. In the first phase we create a max heap
with the elements of the vector.

3167 3 @

Ve grow a heap by inserting each
element of the vector into it.

Not much to do with the first element.

Heapsort

In the first phase we create a max heap with the elements of the vector.

310 |7 3 e

Next we insert 0. @

Heapsort

In the first phase we create a max heap with the elements of the vector.

310 |7 3 e

Next we insert 0. @

Now we "swim" with 0.

Heapsort

In the first phase we create a max heap with the elements of the vector.

310 |7 3 6

Next we insert 0. @

Now we "swim" with 0.

s 3 < 6 7 Yes,so the max heap property is violated. We swap them.

Heapsort

In the first phase we create a max heap with the elements of the vector.

637013 6

Now we have a max heap with the first a
two elements of the vector.

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @ \D

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @ \D

Now "swim" with 7.

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @ \D

Now "swim" with 7.

s 6 < 7 7 Yes,so the max heap property is violated. We swap them.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Now we have a max heap with the first \@

three elements of the vector.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert .. \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert .. \ \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert). \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert). \@

s 3 < 5 7 Yes,so the max heap property is violated. VWe swap them.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Swim with) . \@
$T<s of

No, we have a max heap on the first four elements of the vector.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@
v swi with 5 af 0

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@
v swi with 5 af 0

Is 5 < 3 7 No,so we have a max heap on the first 5 elements.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert o). \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert

ofhe

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert

Now swim with o). <®/ \®

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert

Now swim with o). <®/ \®

s 6 < 5 7 No,so now we have a max heap with our initial vector.

Heapsort

We have completed the first phase.

We now pop the elements one by one.

After popping, we store the elements C@/ \®

at the back of the vector.

Heapsort

We have completed the first phase.

Pop 7. We replace 7 with

ofhe

Heapsort

We have completed the first phase.

Pop 7. We replace 7 with O. \@
We store 7 at the old position of (3)/ \®

in the vector

We no longer think of / as being in the heap. It will not move again.

Heapsort

We have completed the first phase.

Pop 7. We replace 7 with O. \@
We store 7 at the old position of (3)/ \®

in the vector

We no longer think of / as being in the heap. It will not move again.

Heapsort

We have completed the first phase.

Now "sink” with D . AN/ \@

s 5 < 67 Yes,so we swap them.

Heapsort

We have completed the first phase.

Now "sink” with D . AN/ \)

We have restored the max heap property.

Heapsort

Now we pop again. We swap 6 and 3 C)D/ \@

in the vector.

Heapsort

3 316 7

Now we pop again. We swap 0 and 3 CD/

in the vector.

We no longer consider 6 as being in the heap. It will not move again.

Heapsort

3 513167 \@)
Now we sink with 3 . <®/

Is 3 < 5 7 Yes,so we swap them.

Heapsort

31513167 \@)

Ve have restored the heap property. <@/

Next we pop

Heapsort

o S

And sink with 3.

We swap 3 and o.

Heapsort

o e

And sink with 3.

We swap 3 and o.

Heapsort

5130305167 C?D/@\@D
Pop ».

Heapsort

S S T S T B T B T @{@
Pop 3.

Heapsort

3131501067 @

Pop 3.

Heapsort

313 |0 0

Now our vector is in sorted order.

What is the time complexity of heap sort?

Heapsort

input vector 3|76 3

sorted vector 313 0| 7

Heapsort is not a stable sorting algorithm. The order of keys with the same
value is not necessarily the same in the output as in the input.

Benefit of Stable Sort

McBeal, Ally McBeal, Ally McBeal, Ally

Smith, Jack Smith, Bob McBeal, Diana

q #

sort by McBeal, Diana s;pje sort by Smith, Bob

first name last hame
Smith, Bob Smith, Jack Smith, Jack

McBeal, Diana

now fully
sorted

Comparison-based sort

A comparison-based sorting algorithm only interacts with the data

via a "compare” function.
4 — 1 ifa<b
0 otherwise

b —

compare

Comparison-based sort

A comparison-based sorting algorithm only interacts with the data

via a "compare” function.
1 ifa<b
0 otherwise

Is heapsort a comparison based sorting algorithm?

(a——

b —

compare

Comparison-based sort

A comparison-based sorting algorithm only interacts with the data

via a "compare” function.
1 ifa<b
0 otherwise

Is heapsort a comparison based sorting algorithm?

(a——

b —

compare

What is an example of a sorting algorithm we have seen that is not
comparison based!?

Comparison-based sort

Any comparison based sorting algorithm must make at least a constant times
n log n comparisons in the worst case.

Heapsort is optimal with respect to number of comparisons.

We cannot expect to have worst case (J(1) insert and pop operations on a
heap.

In-Place

Heapsort is also an in-place sorting algorithm.

In-Place

Heapsort is also an in-place sorting algorithm.

We just needed a constant number of helper variables, in addition to the
original input array.

Intro Sort

Implementation of the standard library sorting algorithm std :: sort
typically uses an algorithm called introspective sort.

It starts out doing quicksort, but if this takes too long it switches to heapsort.

This allows it to have O(nlogn) worst-case running time (which is
required by the standard since C++11).

