Announcements

No lecture for the next two weeks (Stuvac and ANZAC day).

Programming Assignment 2 launches April 29. It will be about min heaps
and shortest paths.

| have shuffled around the lectures to prepare you for PA2. We have
postponed the lecture on Binary Search Trees.

set and map are based on balanced binary search trees.

Last Time

Path: sequence of vertices vo,...,vx where each {vi—1,v:} is an edge
for i=1 to k.

VVe allow vertices to repeat, and call it a simple path when all vertices
are distinct.

A cycle is a simple path vo,...,vx where {vo,vx} is also an edge and & > 2.

Last Time

Heap memory seems to be named after the informal meaning of a “pile”,
and is not related to the data structure.

Bjarne Stroustrup calls heap memory the “free store”.

Min Heap

Review:

What are the invariants?

What are the operations?
10,
holofR6
22,

EENEDNEEE

A nice feature of heaps is that they are
relatively simple to implement.

We can represent the heap by
a vector. \ \

22

Complexity

What is the complexity of our 3 operations on a min heap?
push: @
- e G

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

To sort the vector from smallest to largest, it is best to use a max heap.

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

To sort the vector from smallest to largest, it is best to use a max heap.

In 2 max heap the key at a node is not smaller than the keys of its children.

Heapsort

Let's see how we can use a heap to sort a vector of n elements.

To sort the vector from smallest to largest, it is best to use a max heap.

In 2 max heap the key at a node is not smaller than the keys of its children.

In 2 max heap, the root holds the largest element.

Heapsort

Heapsort consists of two phases. In the first phase we create a max heap
with the elements of the vector.

Ve grow a heap by inserting each
element of the vector into it.

Heapsort

Heapsort consists of two phases. In the first phase we create a max heap
with the elements of the vector.

Ve grow a heap by inserting each
element of the vector into it.

Heapsort

Heapsort consists of two phases. In the first phase we create a max heap
with the elements of the vector.

3167 3 @

Ve grow a heap by inserting each
element of the vector into it.

Not much to do with the first element.

Heapsort

In the first phase we create a max heap with the elements of the vector.

310 |7 3 e

Next we insert 0. @

Heapsort

In the first phase we create a max heap with the elements of the vector.

310 |7 3 e

Next we insert 0. @

Now we "swim" with 0.

Heapsort

In the first phase we create a max heap with the elements of the vector.

310 |7 3 6

Next we insert 0. @

Now we "swim" with 0.

s 3 < 6 7 Yes,so the max heap property is violated. We swap them.

Heapsort

In the first phase we create a max heap with the elements of the vector.

637013 6

Now we have a max heap with the first a
two elements of the vector.

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @ \D

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @ \D

Now "swim" with 7.

Heapsort

In the first phase we create a max heap with the elements of the vector.

6[3]7]0]3 6

Next we insert [into the heap. @ \D

Now "swim" with 7.

s 6 < 7 7 Yes,so the max heap property is violated. We swap them.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Now we have a max heap with the first \@

three elements of the vector.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert .. \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert .. \ \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert). \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert). \@

s 3 < 5 7 Yes,so the max heap property is violated. VWe swap them.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Swim with) . \@
$T<s of

No, we have a max heap on the first four elements of the vector.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@
v swi with 5 af 0

Heapsort

In the first phase we create a max heap with the elements of the vector.

Next we insert 3 . \@
v swi with 5 af 0

Is 5 < 3 7 No,so we have a max heap on the first 5 elements.

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert o). \@

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert

ofhe

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert

Now swim with o). <®/ \®

Heapsort

In the first phase we create a max heap with the elements of the vector.

Finally, we insert

Now swim with o). <®/ \®

s 6 < 5 7 No,so now we have a max heap with our initial vector.

Heapsort

We have completed the first phase.

We now pop the elements one by one.

After popping, we store the elements C@/ \®

at the back of the vector.

Heapsort

We have completed the first phase.

Pop 7. We replace 7 with

ofhe

Heapsort

We have completed the first phase.

Pop 7. We replace 7 with O. \@
We store 7 at the old position of (3)/ \®

in the vector

We no longer think of / as being in the heap. It will not move again.

Heapsort

We have completed the first phase.

Pop 7. We replace 7 with O. \@
We store 7 at the old position of (3)/ \®

in the vector

We no longer think of / as being in the heap. It will not move again.

Heapsort

We have completed the first phase.

Now "sink” with D . AN/ \@

s 5 < 67 Yes,so we swap them.

Heapsort

We have completed the first phase.

Now "sink” with D . AN/ \)

We have restored the max heap property.

Heapsort

Now we pop again. We swap 6 and 3 C)D/ \@

in the vector.

Heapsort

3 316 7

Now we pop again. We swap 0 and 3 CD/

in the vector.

We no longer consider 6 as being in the heap. It will not move again.

Heapsort

3 513167 \@)
Now we sink with 3 . <®/

Is 3 < 5 7 Yes,so we swap them.

Heapsort

31513167 \@)

Ve have restored the heap property. <@/

Next we pop

Heapsort

o S

And sink with 3.

We swap 3 and o.

Heapsort

o e

And sink with 3.

We swap 3 and o.

Heapsort

5130305167 C?D/@\@D
Pop ».

Heapsort

S S T S T B T B T @{@
Pop 3.

Heapsort

3131501067 @

Pop 3.

Heapsort

313 |0 0

Now our vector is in sorted order.

What is the time complexity of heap sort?

Properties

input vector 3|76 3

sorted vector 313 0| 7

Heapsort is not a stable sorting algorithm. The order of keys with the same
value is not necessarily the same in the output as in the input.

Properties

input vector 3|76 3

sorted vector 313 0| 7

Heapsort is not a stable sorting algorithm. The order of keys with the same
value is not necessarily the same in the output as in the input.

Is heapsort a comparison based sorting algorithm?

Comparison-based sort

Any comparison based sorting algorithm must make at least a constant times
n log n comparisons in the worst case.

Heapsort is optimal with respect to number of comparisons.

We cannot expect to have worst case (J(1) insert and pop operations on a
heap.

In-Place

Heapsort is also an in-place sorting algorithm.

In-Place

Heapsort is also an in-place sorting algorithm.

We just needed a constant number of helper variables, in addition to the
original input array.

Intro Sort

Implementation of the standard library sorting algorithm std :: sort
typically uses an algorithm called introspective sort.

It starts out doing quicksort, but if this takes too long it switches to heapsort.

This allows it to have O(nlogn) worst-case running time (which is
required by the standard since C++11).

Representations
of Graphs

Graphs

What are the main flavours of edge types in graphs?

Graph Operations

What operations might you want a graph data structure to support!

Graph Representation

What are the two main data structures for representing a graph!?

Graph Representation

What are the two main data structures for representing a graph!?

Adjacency matrix

0

-

1

1.1

2 0
0 0
0 0.5
0 0

B3
cCipe

Adjacency list

RIN [

4 1:0.8 21 2
—»mllllptr |
—{1:1.5 [~ 0: 1 [3:0.5
—10: 1.1

Adjacency matrix Adjacency list

0 08 2 0 0 F—1:0.8 2 2

U 000 1 |nullptr

1 1.5 0 0.5 : —
1.1 0 0 O 2 1i1.5 ~[0F 1 3105
_ ' 3 011

Adj. matrix | Adj. list
size O(n?) O(n + m)
add edge O(1) O(1)
edge (7,7) ? O(1) O(deg(7))
list out-adjacent to v O(n) O(deg(v))

Graph Traversals

Graph Traversals

A graph traversal is a way to visit every vertex in the graph.

We start at one vertex and visit all of the other vertices reachable from
that vertex.

Vertex U is reachable from v if there is a (directed) path from v to wu .

This routine can be called from an outer loop to visit all the vertices in
the graph.

Undirected Graph

Which vertices are reachable from vertex 4?

Undirected Graph

Which vertices are reachable from vertex 4?

Directed Graph

Which vertices are reachable from vertex 4?

Directed Graph

Which vertices are reachable from vertex 4?

Directed Graph

Which vertices are reachable from vertex 4?

We will talk more about directed
graphs next time.

For today we stick to undirected
graphs.

Graph Traversals

What kinds of problems can graph traversals solve in undirected graphs!?

Connected Component

Let's say we have an undirected graph.

A connected component of a graph is a subset S of vertices that
) is connected, i.e., there is a path between every u,v € 5.

2) Any 4 € S is not connected toany v € S.

The connected components in this graph are

(6) {0,1,2,3,4,5} and {6,7,8}.

@‘@

Depth-First Search

Depth-First Search

We start at one particular vertex. Let's say
we start at vertex 4.

The goal is to visit all vertices connected to
the starting vertex.

The main place where we have choice is the order in which we visit
neighbours.

Depth-First Search

bool marked[N] {};

void dfs(unsigned v)

{

marked[v] = true;
for(auto u : arr[v])

{
1f(!marked[u])

{

dfs(u);
Adjacency List _
O:15 }
;3‘5} % (I) Here arr|v| is the list of vertices adjacent to v .
3:4 2 The order of neighbors in the list affects the order
4:5372 in which we visit vertices.

5:4 10

Depth-First Search

bool marked[N] {};
std: :vector<int> edge to(N,-1);

volid dfs(unsigned v)

{

marked[v] = true;
for(auto u : arr[v])

{
1f(!marked[u])

{

edge to[u] = v;
Adjacency List | dfe(;
0:15 .
1:520

We make one addition: we also have an array

2:4 3 | edge_to where edge_to|u| is the vertex from
3:4 2 which we visit .
4.5 32

5.4 | 0 https://godbolt.org/z/aEcfzd5el

Depth-First Search

vold dfs(unsigned v)

We start at vertex 4. {
marked[v] = true;
for(auto u : arr[v])
Where do we go next! {
1f(!marked[u])
{
edge to[u] = v;
dfs(u);
Adjacency List _
}
O:15
1:520
2:4 3 |
3:4
4.5 372

5:4 10

Depth-First Search

void dfs(unsigned v)

Vertex 5. {
marked[v] = true;
for(auto u : arr[v])
Now where! {
1f(!marked[u])
{
edge to[u] = v;
dfs(u);
. . }
Adjacency List }
}
O:15
1:520
2:4 3 |
3:4 2
4.5 3 2

5:4 10

Depth-First Search

void dfs(unsigned v)

Vertex |. {
marked[v] = true;
for(auto u : arr[v])
Next up! {
1f(!marked[u])
{
edge to[u] = v;
dfs(u);
Adjacency List)
}
0:15
1:520
2:4 3 |
3:4 2
4:5 32

5:4 10

Depth-First Search

void dfs(unsigned v)

Vertex 2. {
marked[v] = true;
for(auto u : arr[v])
Next up! {
1f(!marked[u])
{
edge to[u] = v;
dfs(u);
Adjacency List)
}
0:15
1:520
2:4 3 |
3:4 2
4:5 32

5:4 10

Depth-First Search

void dfs(unsigned v)

Vertex 3. {
marked[v] = true;
for(auto u : arr[v])
The call to dfs on vertex 3 { if(1marked[u])
terminates. ' edge tofu] = vs
dfs(u);
. . }
Adjacency List You can see from the red)
0|5 arrow that we return to }
1-59 0 dfs on vertex 2.
2:4 3 |
3:4 2
4.5 32

5:4 10

Depth-First Search

. 1d df ' d
We are back in dfs(2) . A
marked[v] = true;
for(auto u : arr[v])
We continue in the for loop t
. 1f(!marked[u])
with vertex |. {
edge to[u] = v;
dfs(u);
Adjacency List It is already marked, so the \ }
call terminates. b
O:15
1:520
Where do we return to now?
2:4 3 |
3:4 2
4.5 32

5:4 10

Depth-First Search

. 1d df ' d
We are back in dfs(1). A
marked[v] = true;
for(auto u : arr[v])
We continue in the for loop t
. 1f(!marked[u])
with vertex 0. {
edge to[u] = v;
dfs(u);
Adjacency List It is unmarked! \ }
}
O:15 .
So we visit it.
:520
2:4 3 |
3:4 2
4.5 32

5:4 10

Depth-First Search

1d df ' d
We enter dfs(0). A
marked[v] = true;
for(auto u : arr[v])
All neighbors are already t
1f(!marked[u])
marked. {
edge to[u] = v;
dfs(u);
. . , }
Adjacency List The call terminates. }
}
O:15
1:520
2:4 3 |
3:4 2
4.5 372

5:4 10

Depth-First Search

void dfs(unsigned v)

All vertices are now marked. |

marked[v] = true;
for(auto u : arr([v])
The recursive calls unwind {
. . 1f(!marked[u])
without further action. {
edge to[u] = v;
dfs(u);
. . }
Adjacency List \
}
O:15
1:520
2:4 3 |
3:4 2
4.5 32

5:4 10

Depth-First Search

void dfs(unsigned v)

All vertices are now marked. |

marked[v] = true;
for(auto u : arr([v])
The recursive calls unwind {
. . 1f(!marked[u])
without further action. {
edge to[u] = v;
dfs(u);
. . }
Adjacency List \
}
O:15
1:520
2:4 3 |
3:4 2
4.5 32

5:4 10

Depth-First Search

void dfs(unsigned v)

All vertices are now marked. |

marked[v] = true;
for(auto u : arr([v])
The recursive calls unwind {
. . 1f(!marked[u])
without further action. {
edge to[u] = v;
dfs(u);
. . }
Adjacency List \
}
O:15
1:520
2:4 3 |
3:4 2
4.5 32

5:4 10

Depth-First Search

void dfs(unsigned v)

All vertices are now marked. |

marked[v] = true;
for(auto u : arr([v])
The recursive calls unwind {
. . 1f(!marked[u])
without further action. {
edge to[u] = v;
dfs(u);
. . }
Adjacency List \
}
O:15
1:520
2:4 3 |
3:4 2
4.5 32

5:4 10

Depth-First Search

void dfs(unsigned v)
{
marked[v] = true;
for(auto u : arr([v])
{
1f(!marked[u])
{
edge to[u] = v;
dfs(u);

}

Summary: .

* We mark exactly the vertices reachable from the starting vertex.

* We can use edge_to to find paths from the starting vertex to the other
marked vertices.

* What is the running time!

[terative DFS

. . . void iterative dfs(unsigned start)
We can also write DFS without recursion. Lo
visit stack.push(start);

while(!visit stack.empty())
{

Ve add the neighbors of the vertex we are e gned X T iett_stack-top();

visiting to a stack. [(markedxl)

continue;

}
. . marked[x] = true;
This can simulate the order of calls of the

for(auto u : arr([x])
. . {
Fecursive version. 1f(!marked[u])
{
visit stack.push(u);

}

Breadth-First Search

Breadth-First Search

How does breadth-first search differ from depth-first search?

Breadth-First Search

void bfs(unsigned start)

v Basically we replace the stack
visit queue.push(start); . .
marked[start] = true; data structure of iterative DFS
while(!visit queue.empty()) with 2 queue
{ .

unsigned x = visit queue.front();
visit queue.pop();

for(auto u : arr[x]) Ve explore near neighbors
{
if(1marked[u]) before far ones.
{
visit queue.push(u);
marked[u] = true;
// we came to u from x
edge to[u] = x;

Breadth-First Search

What is breadth-first search good at!

Shortest Path Tree

This is a picture of the edge_to relation from
running breadth-first search starting at vertex 0.

The path between 0 and any other vertex v in this
tree is a shortest path between them in the original
graph.

Whatever-first
search

Whatever-first search

Depth-first and breadth-first search follow the same outline, but they choose
which vertex to visit next in a different way.

In DFS the visit order is determined by a stack and in BFS a queue.

Plugging in different data structures also gives interesting algorithms!
This leads to an idea Jeff Erickson calls "whatever-first search”.

Section 5.5 in Algorithms by Jeff Erickson
https://jeffe.cs.illinois.edu/teaching/algorithms/book/05-graphs.pdf

Whatever-first search

A bag stands for any data structure that has operations of push, front, and pop.

WHATEVERFIRSTSEARCH(S):

put s into the bag
while the bag is not empty
take v from the bag

if v is unmarked
mark v

for each edge vw Algorithms by Jeff Erickson,
put w into the bag page 200.

Next time, we will see Dijkstra’s algorithm, which follows this template
where the bag is a priority queue.

