
Topics for Today

● CS Theory
○ Stack and heap recap
○ Tree data structure
○ Depth and Breadth first searches

● This week’s lab
○ Designing a graph data structure
○ Finding connected components
○ Solving a sliding tile puzzle
○ Knight moves (chess)

Stack and Heap
Stack
● Fast allocation
● Only exists in scope
● Automatically deleted
● Fast deletion

Heap
● Uses new keyword
● Slow allocation
● Programmer decides lifetime
● Manually deleted
● Can cause memory leaks

Designing a Graph Data Structure
Most of the remainder of the course will be dealing with graph data structures.
Let’s take some time to think about how we can represent a graph through a data
structure.

A graph is a collection of nodes, and the edges between the nodes.
So you need to think of a way of storing these two things.
And for this activity we’ll look at ways of writing
the following core functions:
● Add edge (u, v)
● Is edge (u, v)
● Adjacent To (v) - get list edges on node v
● Display - print the graph
● Constructor(number of nodes, directed?)

Designing a Graph Data Structure
The approaches we will mostly be using in this course are:
1. Adjacency matrix - vector<vector<bool>>

A vector of vectors, forming a matrix. Each node gets a row
and a column, cells in which represent the edges in our graph.
The matrix is always the same size, O(1) look up on edges.

2. Adjacency list - vector<list<int>> / vector<set<int>>
A vector of lists/sets, each node has a set, containing the nodes
it has an edge to. Tends to take up less space than the matrix,
but has O(n)/O(logn) edge lookup.

 A B C D
A[[0,1,1,0],
B [0,0,1,0],
C [1,1,0,1],
D [0,0,1,0]]

A[{B,C},
B {A,C},
C {A,D},
D {C}]

Now go and implement a
graph using one of these, we
will be using it in the following
exercise.

Depth and Breadth First Searches
Depth-First Search
● Explores options to exhaustion

before moving on
● Stack data structure

Breadth-First Search
● Explores options widely, looking at

all options before moving in
towards extremities.

● Queue data structure
● Vertices are entered into queue in

order of their distance to start node.

Finding Connected Components
Using the code from the previous exercise, solve this problem.
In a graph, return how many connected components there are, and list the nodes in
them.

A connected component is a group of nodes which can reach each other through
any number of edges.

So for our example there are
two connected components,
{0,1,2,3,4,5}, and
{6,7,8}

We will solve this using Depth First Search,
which uses a stack to order its traversal.

Knight Moves
Using the properties of how a knight moves in chess (2 units in one direction, one
unit in an orthogonal direction), find the fewest number of moves to move from (0,0)
to a destination (x,y) on an infinite chess board.
We can represent this as an abstract graph. Each node represents an x-y position on
the board, and the edges from that node represent the available moves, leading to
new positions.

You have to write the function
std::vector<Point> Knight::minKnightMoves(const Point& dest)
Returning the smallest set of moves to get
from the origin to a destination.
Solve this using Breadth-first Search
You also have to write a function to return
the path, but I am happy to give that to you.

