Topics for Today

e CS Theory

o Stack and heap recap
o Tree data structure
o Depth and Breadth first searches

e This week’s lab
o Designing a graph data structure
o Finding connected components
o Solving a sliding tile puzzle
o Knight moves (chess)

Stack and Heap

Stack

Fast allocation

Only exists in scope
Automatically deleted
Fast deletion

Heap

Uses new keyword

Slow allocation

Programmer decides lifetime
Manually deleted

Can cause memory leaks

Designing a Graph Data Structure

Most of the remainder of the course will be dealing with graph data structures.
Let's take some time to think about how we can represent a graph through a data

structure.

A graph is a collection of nodes, and the edges between the nodes.
So you need to think of a way of storing these two things.
And for this activity we'll look at ways of writing
the following core functions:

e Add edge (u, V)
Is edge (u, v)
Adjacent To (v) - get list edges on node v
Display - print the graph
Constructor(number of nodes, directed?)

Designing a Graph Data Structure

The approaches we will mostly be using in this course are:

1. Adjacency matrix - vector<vector<bool>> A
A vector of vectors, forming a matrix. Each node gets a row B
and a column, cells in which represent the edges in our graph. C
The matrix is always the same size, O(1) look up on edges. D

2. Adjacencylist -vector<list<int>>/vector<set<int>>
A vector of lists/sets, each node has a set, containing the nodes
it has an edge to. Tends to take up less space than the matrix,
but has O(n)/0(logn) edge lookup.

Now go and implement a
graph using one of these, we
will be using it in the following
exercise.

Depth and Breadth First Searches

Depth-First Search . Breadth-First Search
e Explores OP.UOHS to exhaustion e Explores options widely, looking at
before moving on all options before moving in
e Stack data structure towards extremities.

e Queue data structure
e \Vertices are entered into queue in
order of their distance to start node.

|| sfe] | EEEEEEE
| 208 | EEEEEEN
L lafal | 8l1(2] |
EEEDEEE 7]0|3] | |
EEEEEEE 6(5/4] | |
EEEEEEN HEEEEE
HEEEEEEN HEEEEE

Finding Connected Components

Using the code from the previous exercise, solve this problem.
In a graph, return how many connected components there are, and list the nodes in

them.

A connected component is a group of nodes which can reach each other through
any number of edges.

So for our example there are

two connected components,

{0,1,2,3,4,5}, and

{6,7,8}

We will solve this using Depth First Search,
which uses a stack to order its traversal.

Knight Moves

Using the properties of how a knight moves in chess (2 units in one direction, one
unit in an orthogonal direction), find the fewest number of moves to move from (0,0)
to a destination (x,y) on an infinite chess board.

We can represent this as an abstract graph. Each node represents an x-y position on
the board, and the edges from that node represent the available moves, leading to
new positions.

You have to write the function

Returning the smallest set of moves to get
from the origin to a destination.

Solve this using Breadth-first Search

You also have to write a function to return
the path, but | am happy to give that to you.

3
2
3
2
3
2
3
2

