Shortest Paths

Shortest Paths

Today we are going to talk about finding shortest paths in directed and
weighted graphs.

McDonald's § y Xl

ille Mosman

T Ke'sIPoint - Neutral Bay
This is a problem that most of us solve o R o
erry. Islan
evel’)’ day. Reserve Taronga Zoo Sydney O

Sydney Harbour Bridge

Birchgrove
We might need directed graphs because of ... s Magdlaries char)
one-way streets. 34 e
-oreshore [
Parks ‘A4 SYd-ne\y 12.2km
Q Darling Harbou ! \\y
Edge weights could be distance, time, el N
ymarket
fuel, cost, etc. Tec.,.,;.’:;,;e;;::;:;
al p””CCQ (,irru gey om Surry Hills))~ Moq,, Coopi
Hospital W " Temporarily closed J M1 ~2, _ Woollahra

There are several paths from vertex 0 to vertex 3:

There are several paths from vertex 0 to vertex 3:
0—=1—-2-=3

The weight of this path is 3.0.

There are several paths from vertex 0 to vertex 3:
0—=0—=>4—3

The weight of this path is 3.0.

There are several paths from vertex 0 to vertex 3:

O0—5—1—2—3

The weight of this path is 2.5.

This is the shortest path from 0 to 3 in this graph. The total sum of edge
weights on the path is the smallest.

0—5—->1—-2—3

The length of a shortest path from 0 to 3 is 2.5.

We define the distance d(u,v) from vertex U to vertex ¥ to be the length
of a shortest path from u to v.

In this graph d(0,3) = 2.5.

Unreachable Vertices

1.5

In order to avoid a special case, when v is not reachable from u we define
d(u,v) = 0.

In this graph d(0,6) = oo

Single-Source Distance

Single-source distance problem: Given a vertex v, find the distance from v
to every other vertex in the graph.

1.0

output: distance
from vertex 0.

n.....admwpm@

4 5 0

Single-dSource shortest Paths

Usually we don't just want to know the distance from vertex v to the
other vertices in the graph but also shortest paths.

It is generally too expensive to output a shortest path from v to every other
vertex in the graph.

But we can output a data structure from which shortest paths can be
reconstructed.

We can output array of size n so that for any vertex w we
can reconstruct a shortest path from the source v to w in time O(n) .

Single-Source shortest Paths

Following the blue edges gives a shortest
path from O to every other vertex
reachable from O.

This is the analog of the shortest-
path tree we saw in the undirected
case.

There is a unique blue-edge path from 0 to every vertex reachable
from 0.

Single-Source shortest Paths

We can represent the blue edges by an 1.0
array of size n .
1.5 (1 1.0 @
0.5 1.0
Every vertex has at most one () 0.5 10.5 (3)—6)
incoming blue edge. o -
OO

edge_tolt| gives the name of the
vertex that the blue edge to ¢
comes from,oris —1 if 7 has
no incoming blue edge.

Reconstructing Shortest Paths

We can use the edge_to array to

reconstruct shortest paths from 0. 1.0
A shortest pth from vertex | 5 (1 70 @
0 to vertex 3 is given by:

3
edge_to|3] 2

edge_to|2] 1

edge_to|l] 5

edge_to|b| 0

Single-Pair Shortest Path

You may be wondering why we talk about the single-source shortest path
problem.

Usually we just ask google maps how to go from point A to point B, not
from point A to everywhere else.

We can consider the single-pair shortest path problem, but we don't have
any better algorithms than for the single-source shortest path problem!

CD\A If the shortest path from v to w
@/ O/'va goEes through u , it uses a shortest
path from v to u .

Negative Weight Cycles

Before we get into shortest path algorithms we have to discuss a special case.

I've taken our example graph and changed the weight in blue to instead be -2.

Negative Weight Cycles

—2.0

The sum of the weights on the blue edge cycle is -0.5.

Now what is the shortest path from vertex 0 to vertex 3!

Negative Weight Cycles

—2.0

This path has length 2.5.

But if we go around the negative weight cycle, we get a path of length 2.0.

Negative Weight Cycles

—2.0

1.5 g 1.0 @
0.5 1.0

(0) 05| 105 (3)—6)
0.5 2.0
O 0.5 4

If we go around the negative weight cycle and then stop at vertex 3, we get a
path of length 2.0.

If we go around the negative weight cycle twice, we get a path of length |.5.

Using the negative weight cycle, we can get shorter and shorter paths.

Negative Weight Cycles

—2.0

1.5 g 1.0 @
0.5 1.0

(0) 05| 105 (3)—6)
0.5 2.0
O 0.5 4

In this case we define d(0,3) = —o0, and the shortest path from vertex 0
to vertex 3 is undefined.

When a negative weight cycle is reachable from the source vertex, the distance
to every other vertex reachable from the source vertex is —00.

Negative Weight Cycles

—2.0

1.5 g 1.0 @
0.5 1.0

(0) 05| 105 (3)—6)
0.5 2.0
O 0.5 4

We would like to detect if there is a negative weight cycle reachable from the
source vertex, and output the cycle if so.

We will see that this can be done by the Bellman-Ford shortest path algorithm.

Negative weight cycles have interesting applications to arbitrage in markets.

Simple Shortest Paths

If no negative weight cycle is reachable from the source vertex, then shortest
paths from the source vertex do not contain cycles.

If the weight of the cycle is > 0, removing the cycle gives a path that is not
longer.

In this case shortest paths do not repeat vertices, they will be simple.

Shortest paths will have at most n — 1 edges when the graph has n vertices.

Generic Shortest
Path Algorithm

Setup

(D12

| 0.5 0.5 @ 1.0 :

0.5

Let's say the source vertex is 0.

Ve want to compute two things:

1) The distance from 0 to every other vertex in the graph:

n.....admwpmo

4 5 0

Setup

Let's say the source vertex is 0. 1.5
@/0.5'

Ve want to compute two things: 0.5

1.0

2) An array edge_to encoding shortest paths from vertex O:

Illllﬂl edge-to

4 5 0

Initialization

HEEEEEE dist o

4 5 0

We initialize dist_to|0] =0 and dist_to|i| = oo for every other
vertex 1 .

Invariant |:The algorithm always maintains that d(0,7) < dist_to|z| for
every vertex 1.

Notice that this is true initially.

Initialization

We initialize edge_to to be everywhere —1.

Invariant 2: tracing back ¢ < edge_to|i| < --- <— 0 gives a path from
vertex 0 to 7 of length < dist_toli] .

Notice that this is true initially. When dist_to|i| = 0o there is nothing
to certify.

Relaxing an Edge

The generic algorithm just repeatedly picks an edge and relaxes it.

To relax the edge e = (u,v) we check if

dist_to|u| + e.weight < dist_to|v|
If so, then we do the updates:

dist_to|v| = dist_to|u| + e.weight

edge_to|v| = u

Note that dist_to[v] never increases under edge relaxation.

Relaxing Preserves Invariants

Triangle Inequality: If there is an edge e = (u,v) then

d(0,v) < d(0,u) + e.weight

Q/\/@/

Relaxing Preserves Invariants

Invariant |:The algorithm always maintains that d(0,7) < dist_to|z| for
every vertex 1.

Suppose this invariant holds before we relax the edge e = (u,v). So we
know that d(0,u) < dist_to|u].

d(O, ’U) < d((), u) + e.welight triangle inequality

< dist_tolu| + e.weight

So updating dist_to|v| = dist_to|u| + e.weight preserves Invariant |.

Invariant 2:Tracing back ¢ < edge_tolt| < --- <— 0 gives a path from
vertex 0 to ¢ of length < dist_toli| .

Suppose this invariant holds before we relax the edge e = (u,v). So tracing
back u < edge_to|u| <— --- <— 0 gives a path from 0 to u of length
< dist_tol|u].

If we do the update dist_to|v| = dist_to|u| + e.weight then we also set
edge_tolv| = u .

Tracing back v <— edge_to|v| = u < --- <~ 0 gives a path from 0 to v of
length < dist_to|u| + e.weight .

Relaxing A Path

We say that a sequence of edge relaxations relaxes a path €1,..., €%
if there is a subsequence that relaxes €1,...,€r in that order.

Consider the path (0,5),(5,1),(1,2),(2,3) .

An example sequence relaxing this path is J

(2,3) (0,5) (6,3) (1,2) (5,1) OO,
(0,1) (5,4) (1,2) (2,3) 0.5 1.0

@ 0.9 0.9 4—@
0.5 @ @ 2.0

0.5

Relaxing a Shortest Path

Relax a Path Property If the algorithm relaxes a shortest path from 0 to v
then dist_to|v| = d(0,v).

o 62 “‘

After relaxing €1 we know

dist_toluq| < e;.weight

Relax a Path Property: If the algorithm relaxes a shortest path from 0 to v
then dist_to|v]| = d(0,v).

After relaxing €1 we know

dist_to|ui| < ej.weight
Later when we relax €2 we will have

dist_to|us| < dist_to|ui| + es.weight

Relax a Path Property: If the algorithm relaxes a shortest path from 0 to v
then dist_to|v]| = d(0,v).

After relaxing €1 we know

dist_to|ui| < ej.weight

Later when we relax €2 we will have

dist_to|us| < ej.weight + es.weight

Relax a Path Property: If the algorithm relaxes a shortest path from 0 to v
then dist_to|v]| = d(0,v).

Later when we relax €3 we will have

dist_to|uz| < e;.weight + es.weight + e3.weight

Relax a Path Property: If the algorithm relaxes a shortest path from 0 to v
then dist_to|v]| = d(0,v).

Later when we relax €x+1 we will have

k+1
dist_to|v| < Z e;.weight
i=1

= d(0, v)

Generic Template

Relax a sequence of edges that relaxes a shortest path from the source
vertex 0 to every other vertex reachable from 0.

What is left up to the implementation is how to choose this sequence.

We will see three implementations of this template

Generic Template

Relax a sequence of edges that relaxes a shortest path from the source
vertex 0 to every other vertex reachable from 0.

Bellman-Ford: Graphs without negative cycles

Do n — 1 rounds of relaxing every edge.

Shortest paths in a DAG:

Relax the edges in topologically sorted order

Dijkstra’s Algorithm: Graphs with positive edge weights

Relax edges in order of distance of the origin of the edge from the
source.

Bellman-Ford
Algorithm

Bellman-Ford
Algorithm

Let's say we have a directed and weighted graph with n vertices.

We want to find shortest paths from the source vertex 0 to every other
vertex reachable from O.

Suppose that there is no negative-weight cycle reachable from vertex O.

The basic code for the Bellman-Ford algorithm is beautifully simple.

Bellman-Ford
Algorithm

for(int 1=0; 1 < n-1; ++1) {
for every edge e {
relax(e);

}
}

pseudocode for Bellman-Ford loop

We perform 1 — 1 rounds of relaxing every edge in the graph.

Relax Function

To relax the edge e = (u,v) we check if

dist_to|u| + e.weight < dist_to|v|
If so, then we do the updates:

dist_to|v| = dist_to|u| + e.weight

edge_to|v| = u

Why 1t Works

If there is no negative-weight cycle reachable from vertex O, then all
shortest paths from vertex 0 are simple paths with at most n — 1 edges.

If this is a shortest path from O to vertex v we know that £k +1<n —1.

Why 1t Works

In the first round of relaxations we relax edge €1.

In the second round of relaxations we relax edge €2 .

After n — 1 rounds of relaxations, we will have relaxed this shortest path.

Why 1t Works

Relax a Path Property: If the algorithm relaxes a shortest path from 0 to
then dist_tol|v| = d(0,v).

At the end of the Bellman-Ford algorithm we will have
dist_to|v] = d(0,v)

for any vertex v.

Why 1t Works

At the end of the Bellman-Ford algorithm we will have
dist_to|v| = d(0, v)
for any vertex v.

Invariant 2:Tracing back ¢ <— edge_tolt| < --- <— 0 gives a path from
vertex 0 to ¢ of length < dist_toli| .

Running Time

for(int 1=0; 1 < n-1; ++1) {
for every edge e {
relax(e);

}
}

pseudocode for Bellman-Ford loop

The running time of the Bellman-Ford algorithm is O(|V'| - |E|) in the
adjacency list model.

Relaxing an edge takes constant time.

Each iteration of the for loop takes time O(|FE/|) in the adjacency list model.

Negative Cycles

VVe have already established when there are no negative weight cycles
reachable from the source 0, after |V| — 1 iterations of the for loop

d(0,7) = dist_tolt]
for every vertex 1.

When there are no negative weight cycles reachable from 0O, the dist_to
values will not change on doing more iterations of the for loop by invariant |.

Fact: The input graph has a negative weight cycle reachable from 0 if and only
if some dist_to value decreases in a \V\th iteration of the for loop.

Negative Cycles

Fact: The input graph has a negative weight cycle reachable from 0 if and only
if some dist_to value decreases in a \V|th iteration of the for loop.

To detect a negative weight cycle we do one more iteration of the for loop
and check if any dist_to value decreases.

The graph defined by the edge_to array will contain the negative weight
cycle if there is one.

We can use our directed cycle algorithm to find it.

Negative Cycles

Fact: The input graph has a negative weight cycle reachable from 0 if and only
if some dist_to value decreases in a \V|th iteration of the for loop.

We have to see that if the graph has %hnegative weight cycle then some
dist_to value decreases in the |V|" iteration.

Suppose this is a negative weight cycle
reachable from O.

k

Z(Ui_l, vi).weight < 0
1=0

We have to see that if the graph has a negative weight cycle then some

:) th . :
dist_to value decreases in the |V\ iteration.
@/’\ e Let dist_to|v;] be the values after |V| —1
/ @ Iiterations.
“—(vg
@\ . All these values are finite since the cycle is
o’ reachable.

Let dist_to’[v;] be the values after |V| iterations.

‘th

After relaxing all edges in the |V|"" round:

dist_to'[v;] < dist_tolv;_1] + (v;_1,v;).weight

We have to see that if the graph has %hnegative weight cycle then some
dist_to value decreases in the |V|"" iteration.

<) (Vg
@\ '.‘ dist_to'[fvz-] < dist_to[vi_l] -+ (vi_l, vi).weight

Summing this over the cycle gives

k k
Z dist_to'[v;] < Z dist_tolv;_1|+ (vi_1,v;).weight
i=0 i=0

We have to see that if the graph has %hnegative weight cycle then some
dist_to value decreases in the |V|"" iteration.

Summing this over the cycle gives

k k
Z diSt_tO/[Uz'] < Z diSt_tO[Uz'_l] -+ (Uz‘_l, vi).weight
1=0 1=0

If dist_to'[v;] = dist_to[v;] for all i then these terms cancel. This implies

k

0 < Z(U@'_l, Ui).weight
0

(

a contradiction to this being a negative weight cycle.

Dijkstra's Algorithm

Dijkstra's Algorithm

The final application of the generic shortest path algorithm we look at
is Dijkstra’s algorithm.

This solves the single-source shortest path problem when all edge weights are
positive.

Dijkstra’s algorithm follows the generic template and processes vertices
in order of their distance from the source.

When we process a vertex we relax all its outgoing edges.

Why 1t Works

Suppose this is a shortest path from 0 to vertex V.

By the optimal substructure of shortest paths:
i

d(0,u;) = Z e;.weight

7=1

Why 1t Works

d(0,u;) = Z e;.weight

j=1
All edge weights are positive, so this means

d(0,u1) < d(0,us) < --- < d(0,ur) < d(0,v)

Why 1t Works

All edge weights are positive, so this means

d(0,u1) < d(0,us) < --- < d(0,ur) < d(0,v)

By relaxing the outgoing edges of vertices in order of the distance from 0,
we will relax the edges on this path in order!

Why 1t Works

d(0,u1) < d(0,us) < --- < d(0,ur) < d(0,v)

By relaxing the outgoing edges of vertices in order of their distance from 0
we will relax this path.

Relax a Path Property: If the algorithm relaxes a shortest path from 0O to
then dist_to|v| = d(0,v).

Dykstra Implementation

The implementation of Dijkstra's algorithm is very similar to that of
Prim’s algorithm for finding a minimum spanning tree.

As in Prim we maintain a subset S of vertices.

Initially S = {0} consists just of the source vertex.

We want to maintain two invariants:
1) d(0,7) =dist_to[z| forall 1 € §.
2) d(O,i) < d((),j) forall2€ 5,7& 5 .

Dl]kStIa Example

Let S = {0} and initialize dist_to

as usual.
0.5

(3 We want to find the vertex closest
to 0 that is not in S .

Key: Because we have positive weights,
the closest vertex is an out-adjacent
- neighbor of 0.

Add all outgoing edges from 0 to a
minimum priority queue.

The key of edge ¢ is
dist_to|0| + e.weight
The top of the priority queue tells us

the edge to follow to get the next
vertex to add to S.

{(0,5),0.5} {(0,1),1.5}

priority_queue

We pop the minimum element out of

the queue:
{(0,5),0.5}

Vertex 5 is notin S so we add it,
and update dist_to|5] .

HEEEE Our invariants still hold:
0 1 2 3 4 5

|) Vertex 5 is closer to 0 than any
dist_to other vertex notin S.

{(0,1),1.5} 2) d(0,5) = dist_to[5].

priority_queue

0 |oefocfoo]efos
0 1 2 3 4 5

dist_to

{(0,1),1.5}

priority_queue

Next add all outgoing edges of vertex 5
that leave S to the priority queue.

Edges to another vertex in S are not
useful.

The key for edge € is

dist_to|5| + e.weight

We add {(5,1),1},{(5,4),1} to the
queue.

This is our current status.

Theset S = {0,5}.

The priority queue has 3 elements.

We go to the next round and
HEEEE pop the top element out
0 1 2 3 4 5 of the priority queue.

dist_to

1(5,1),151(5,4),1; 1(0,1), 1.5}

priority_queue

0 |oefocfoo]efos
0 1 2 3 4 5

dist_to

{(5,4),1} {(0,1),1.5}

priority_queue

Popping gives the element
{(5,1),1}

The destination vertex | is not
already in S , so we process it.

We update dist_to|l]| =1
which is the correct distance.

Ve then add all outgoing edges
from | that leave S to the
priority queue.

0 J10]oefoo]e]0.5
0 1 2 3 4 5

dist_to

1(5,4),1; 1(0,1), 1.5} 1(1,2),2}

priority_queue

We have updated dist_to|l]
and added {(1,2),2} to the

priority queue.
The key value 2 is

dist_to|l| 4+ (1,2).weight

The next element to be popped
out of the queue is {(5,4),1}.

Pop the element {(5,4),1} out
of the queue.

The destination vertex 4 is not
in S so we add it and update

naaa dist_to|4| =1
0 1 2 3 4 5

dist_to

{(0,1),1.5} {(1,2),2}

priority_queue

o [l [<[rolos
O 1 2 3 4 5

dist_to

{(0,1),1.5} 1(1,2),2} {(4,3),3}

priority_queue

Now we process vertex 4.

We add all its outgoing edges ¢
leaving S to the queue with key
value

dist_tol4| 4+ e.weight

We add {(4,3),3} to the queue.

{(0,1),1.5}

We pop this element out of the
queue.

1.0
@ The top element in the queue is
0.5
0.5 (3
2.0
S—

0.0
o o[~ [= 005
0O 1 2 3 4 5
dist_to

{(0,1),1.5} 1(1,2),2} 1(4,3),3;

priority_queue

o [l [<[rolos
O 1 2 3 4 5

dist_to

1(1,2),2} {(4,3),3}

priority_queue

We popped {(0,1),1.5} out of
the queue.

Something different happens.

The destination vertex is 1, but
1 is already in our set S .

So we just ignore this edge.

Next we pop {(1,2),2} out of
the priority queue.

The destination vertex 2 is not
in our set S so we process it.

o [l [<[rolos
O 1 2 3 4 5

dist_to

1(1,2),2} {(4,3),3}

priority_queue

1(4,3),3]

priority_queue

Next we pop {(1,2),2} out of
the queue.

The destination vertex 2 is not
in our set S so we process it.

We set dist_to|2| = 2.0 .

We add outgoing edges from 2
that leave S to the priority queue.

Add {(2,3),2.5} to the queue.

The key value 2.5 is
dist_to|2| + (2, 3).weight

1 X B O
0O 1 2 3 4 5
dist_to

{(2,3),2.5} {(4,3),3}

priority_queue

We immediately pop {(2,3),2.5}
out of the queue.

The destination vertex 3 is not
in S so we add it.

1 X B O
0O 1 2 3 4 5
dist_to

{(2,3),2.5} {(4,3),3}

priority_queue

o [ozopalolos
O 1 2 3 4 5

dist_to

1(4,3),3]

priority_queue

We immediately pop {(2,3),2.5}
out of the queue.

We update dist_to[3| with the
key value

dist_to|3| = 2.5

S now contains all the vertices.

WVe can terminate the algorithm.

Running Time

The running time of Dijkstra's algorithm is O(|V| + |E|log |E]) .
The analysis is very similar to that of Prim's algorithm.

Each edge is pushed to the queue at most once.
The push and pop operations take time O(log |E).

We spend O(|V|) time for the initialization of dist_to and edge_to.

Notes

Our presentation differs from many others in two respects:

|) We assume positive edge weights rather than non-negative ones.

The same algorithm works with non-negative edge weights but then
we cannot argue that every shortest path is relaxed.

2) We give a "lazy" version of Dijkstra's algorithm, just as we did with Prim's
algorithm.

Typically instead Dijkstra's algorithm is described using a data structure
we have not introduced, called an index priority queue.

