
Math 19b: Linear Algebra with Probability Oliver Knill, Spring 2011

Lecture 28: Eigenvalues

We have seen that det(A) 6= 0 if and only if A is invertible.

The polynomial fA(λ) = det(A− λIn) is called the characteristic polynomial of
A.

The eigenvalues of A are the roots of the characteristic polynomial.

Proof. If Av = λv,then v is in the kernel of A− λIn. Consequently, A− λIn is not invertible and

det(A− λIn) = 0 .

1 For the matrix A =

[

2 1
4 −1

]

, the characteristic polynomial is

det(A− λI2) = det(

[

2− λ 1
4 −1− λ

]

) = λ2 − λ− 6 .

This polynomial has the roots 3,−2.

Let tr(A) denote the trace of a matrix, the sum of the diagonal elements of A.

For the matrix A =

[

a b
c d

]

, the characteristic polynomial is

λ2 − tr(A) + det(A) .

We can see this directly by writing out the determinant of the matrix A− λI2. The trace is
important because it always appears in the characteristic polynomial, also if the matrix is
larger:

For any n× n matrix, the characteristic polynomial is of the form

fA(λ) = (−λ)n + tr(A)(−λ)n−1 + · · ·+ det(A) .

Proof. The pattern, where all the entries are in the diagonal leads to a term (A11 − λ) ·
(A22 − λ)...(Ann − λ) which is (−λn) + (A11 + ...+Ann)(−λ)n−1 + ... The rest of this as well
as the other patterns only give us terms which are of order λn−2 or smaller.

How many eigenvalues do we have? For real eigenvalues, it depends. A rotation in the plane
with an angle different from 0 or π has no real eigenvector. The eigenvalues are complex in
that case:

2 For a rotation A =

[

cos(t) sin(t)
− sin(t) cos(t)

]

the characteristic polynomial is λ2 − 2 cos(α) + 1

which has the roots cos(α)± i sin(α) = eiα.

Allowing complex eigenvalues is really a blessing. The structure is very simple:

Fundamental theorem of algebra: For a n × n matrix A, the characteristic
polynomial has exactly n roots. There are therefore exactly n eigenvalues of A if we
count them with multiplicity.

Proof1 One only has to show a polynomial p(z) = zn+an−1z
n−1+ · · ·+a1z+a0 always has a root

z0 We can then factor out p(z) = (z − z0)g(z) where g(z) is a polynomial of degree (n − 1) and
use induction in n. Assume now that in contrary the polynomial p has no root. Cauchy’s integral
theorem then tells

∫

|z|=r|

dz

zp(z)
=

2πi

p(0)
6= 0 . (1)

On the other hand, for all r,

|
∫

|z|=r|

dz

zp(z)
| ≤ 2πrmax|z|=r

1

|zp(z)|
=

2π

min|z|=rp(z)
. (2)

The right hand side goes to 0 for r → ∞ because

|p(z)| ≥ |z|n|(1−
|an−1|

|z|
− · · · −

|a0|

|z|n
)

which goes to infinity for r → ∞. The two equations (1) and (2) form a contradiction. The
assumption that p has no root was therefore not possible.

If λ1, . . . , λn are the eigenvalues of A, then

fA(λ) = (λ1 − λ)(λ2 − λ) . . . (λn − λ) .

Comparing coefficients, we know now the following important fact:

The determinant of A is the product of the eigenvalues. The trace is the sum of the
eigenvalues.

We can therefore often compute the eigenvalues

3 Find the eigenvalues of the matrix

A =

[

3 7
5 5

]

Because each row adds up to 10, this is an eigenvalue: you can check that

[

1
1

]

. We can also

read off the trace 8. Because the eigenvalues add up to 8 the other eigenvalue is −2. This
example seems special but it often occurs in textbooks. Try it out: what are the eigenvalues
of

A =

[

11 100
12 101

]

?
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4 Find the eigenvalues of the matrix

A =

















1 2 3 4 5
0 2 3 4 5
0 0 3 4 5
0 0 0 4 5
0 0 0 0 5

















We can immediately compute the characteristic polynomial in this case because A− λI5 is
still upper triangular so that the determinant is the product of the diagonal entries. We see
that the eigenvalues are 1, 2, 3, 4, 5.

The eigenvalues of an upper or lower triangular matrix are the diagonal entries of
the matrix.

5 How do we construct 2x2 matrices which have integer eigenvectors and integer eigenvalues?
Just take an integer matrix for which the row vectors have the same sum. Then this sum

is an eigenvalue to the eigenvector

[

1
1

]

. The other eigenvalue can be obtained by noticing

that the trace of the matrix is the sum of the eigenvalues. For example, the matrix

[

6 7
2 11

]

has the eigenvalue 13 and because the sum of the eigenvalues is 18 a second eigenvalue 5.

A matrix with nonnegative entries for which the sum of the columns entries add up
to 1 is called a Markov matrix.

Markov Matrices have an eigenvalue 1.

Proof. The eigenvalues of A and AT are the same because they have the same characteristic
polynomial. The matrix AT has an eigenvector [1, 1, 1, 1, 1]T .

6

A =







1/2 1/3 1/4
1/4 1/3 1/3
1/4 1/3 5/12







This vector ~v defines an equilibrium point of the Markov process.

7 If A =

[

1/3 1/2
2/3 1/2

]

. Then [3/7, 4/7] is the equilibrium eigenvector to the eigenvalue 1.

Homework due April 13, 2011

1 a) Find the characteristic polynomial and the eigenvalues of the matrix

A =







1 1 1
2 0 1
4 −1 0






.

b) Find the eigenvalues of A =

















100 1 1 1 1
1 100 1 1 1
1 1 100 1 1
1 1 1 100 1
1 1 1 1 100

















.

2 a) Verify that n× n matrix has a at least one real eigenvalue if n is odd.
b) Find a 4× 4 matrix, for which there is no real eigenvalue.
c) Verify that a symmetric 2× 2 matrix has only real eigenvalues.

3 a) Verify that for a partitioned matrix

C =

[

A 0
0 B

]

,

the union of the eigenvalues of A and B are the eigenvalues of C.
b) Assume we have an eigenvalue ~v of A use this to find an eigenvector of C.
Similarly, if ~w is an eigenvector of B, build an eigenvector of C.

(*) Optional: Make some experiments with random matrices: The following Mathemat-
ica code computes Eigenvalues of random matrices. You will observe Girko’s circular
law.

�

M=1000;
A=Table [Random[ ]−1/2 ,{M} ,{M} ] ;
e=Eigenvalues [A ] ;
d=Table [Min [Table [ I f [ i==j , 1 0 ,Abs [ e [ [ i ] ]− e [ [ j ] ] ] ] , { j ,M} ] ] , { i ,M} ] ;
a=Max[ d ] ; b=Min [ d ] ;
Graphics [Table [{Hue [ ( d [ [ j ] ]−a )/ (b−a ) ] ,

Point [{Re [ e [ [ j ] ] ] , Im [ e [ [ j ] ] ] } ] } , { j ,M} ] ]
� �


