
37233 Linear Algebra

Subject coordinator and lecturer:

Mikhail Lapine

Mikhail.Lapine@uts.edu.au

CB07.05.035

phone: 1723



AUT 2024 classes

Interactive lecture-style workshops: each Thursday 16:00

(this is the main source of information and should be attended)

Tutorials (2 hpw): each Friday as scheduled

(including 30 min quick class tests in weeks 2-5, 7-8, and 10-11)

Homework exercises: regular tasks for additional training

(exercises and solutions published on Canvas)

Subject materials are published on Canvas

Please make sure you do receive e-mails on Canvas announcements



Assessment scheme

Quick class tests (30 min each, 8 tests at the tutorials): 30%

— the first test 2 marks, the other seven tests 4 marks each

Mid-term test (2 hours, at the tutorials on 26 April): 40%

— it is required to gain at least 40% of the test mark

Final test (2 hours, at the final tutorials on 17 May): 30%

— it is required to gain at least 40% of the final test mark



Important: next week is unusual 4

1. No on-campus lecture next week

Instead: recordings on Canvas to study online

(it covers the revision of essential material:

vector and matrix algebra, linear systems, row reduction,

homogeneous and inhomogeneous systems)

2. Tutorials (1 March) take place in room CB04.04.321

Quick tests 1 are running next week on Friday (1 March)

(covering linear spaces and subspaces)



Introduction to the subject 5



Motivation: Applications of linear algebra 6

Linear algebra is a fundamental area of mathematics.

It is required almost everywhere where mathematics is involved
— and not only where the analysis is explicitly linear:

Science
(physics, astronomy, chemistry, biology, statistics, . . . )

Engineering (mechanical, electrical, . . . )

Economics and business

Transport, logistics, IT . . .

“Big Data” analysis, machine learning, AI, . . .

(check the supplementary slides with a couple of examples)



Pre-requisite knowledge required 7

Mathematical logic and proofs

Basic algebraic operations with vectors and matrices

Matrix determinants

Matrix inversion

Eigenvectors and eigenvalues

Solving linear systems / matrix row-reduction to echelon forms

There will be brief reminders on these matters as we go,
however these are relying on some pre-existing knowledge.



Subject contents 8

Linear spaces. Span. Linear (in)dependence.

Basis. Coordinate systems.

Linear transformations.

Scalar product. Orthogonality. Projections.

Least-squares approximation. Quadratic forms.

Diagonalisation. Singular value decomposition.

Free bonus topic: LU-decomposition / iterative methods.



Fundamentals of linear algebra

Linear spaces: definition and examples

Subspaces: definition and examples



Linear space: Definition 10

A linear space V is a non-empty set of objects, for which two
operations are defined so that ∀ u, v, w ∈ V and ∀ c, d ∈ R :

addition (u+ v) ∈ V

multiplication by scalars (cu) ∈ V

and these operations obey the following axioms:

(i) u+ v = v + u

(ii) (u+ v) +w = u+ (v +w)

(iii) ∃0 : u+ 0 = u

(iv) ∃ (−u) : u+ (−u) = 0

(v) 1 · u = u

(vi) c (du) = (c d)u

(vii) (c+ d)u = cu+ du

(viii) c (u+ v) = cu+ cv



Linear space: Definition 11

A linear space V is a non-empty set of objects, for which two
operations are defined so that ∀ u, v, w ∈ V and ∀ c, d ∈ R :

addition (u+ v) ∈ V

multiplication by scalars (cu) ∈ V

and these operations obey the following axioms:

(i) u+ v = v + u

(ii) (u+ v) +w = u+ (v +w)

(iii) ∃0 : u+ 0 = u

(iv) ∃ (−u) : u+ (−u) = 0

(v) 1 · u = u

(vi) c (du) = (c d)u

(vii) (c+ d)u = cu+ du

(viii) c (u+ v) = cu+ cv

Consequences:

(ix) 0 is unique

(x) (−u) is unique

(xi) 0 · u = 0

(xii) (−u) = (−1) · u
(xiii) c · 0 = 0

(xiv) u− v = u+ (−v)

(w = u− v if w + v = u)



Linear space 12

(i) u + v = v + u

(ii) (u + v) + w = u + (v + w)

(iii) ∃ 0 : u + 0 = u

(iv) ∃ (−u) : u + (−u) = 0

(v) 1 · u = u

(vi) c (du) = (c d)u

(vii) (c + d)u = cu + du

(viii) c (u + v) = cu + cv

Consequences:

(ix) 0 is unique

(x) (−u) is unique

(xi) 0 · u = 0

(xii) (−u) = (−1) · u
(xiii) c · 0 = 0

(xiv) u − v = u + (−v)

For example, prove the property that: 0 · u = 0

Consider 0 · u+ u , and apply the axioms as follows:

0 · u+ u
αξ 5
= 0 · u+ 1 · u αξ 7

= (0 + 1) · u = 1 · u αξ 5
= u

Now add −u to each side of the obtained equation:(
0 · u+ u

)
+ (−u) = u+ (−u)

αξ 2
=⇒

0 · u+
(
u+ (−u)

)
= u+ (−u)

αξ 4
=⇒

0 · u+ 0 = 0
αξ 3
=⇒ 0 · u = 0 ■



Linear spaces: examples 13

1. Vector space

Consider vectors with n components (real numbers).



(brief reminder on vectors) 14

Vector is an ordered list of numbers. For example v =


v1
v2
...
vn



Multiplication by a scalar: c · v =


cv1
cv2
...

cvn


Addition:

v =


v1
v2
...
vn

 u =


u1
u2
...
un

 v + u =


v1 + u1
v2 + u2

...
vn + un


Vector with all entries equal to 0 is called a zero vector 0



Linear spaces: examples 15

1. Vector space Rn is a linear space.

Consider vectors with n components (real numbers). Addition and
multiplication by scalars results in a vector with n components.

The collection of all such vectors forms a vector space Rn .

Properties of a vector space satisfy the axioms of linear space.

2. A set of all arrows (directed line segments) on a plane, with

• multiplication cv defines an arrow |c| times the length of v ,
pointing in the same (c > 0) or opposite (c < 0) direction

• addition defined by parallelogram rule



Linear spaces: examples 16

3. Let S be a space of “double-infinite” sequences of numbers:

Y = ⟨yk⟩ = {. . . y−2, y−1, y0, y1, y2, . . .}

If Z = ⟨zk⟩ is another element of S , the sum is Y+Z = ⟨yk + zk⟩ .

The scalar multiple is defined by c ·Y = ⟨cyk⟩ .

For S , all the axioms can be verified, so this is a linear space.

Similar linear spaces arise in engineering when a signal (such as
electrical, optical or mechanical) is measured at discrete times.



Linear spaces: examples 17

4. For n ⩾ 0 let Pn be a set of polynomials of a degree up to n

p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n

where variable t and coefficients a0 . . . an are real numbers.

The degree of p is the highest power of t with non-zero coefficient

(for p(t) = a0 ̸= 0 it is zero). The zero polynomial has all ai = 0 .

Given q(t) = b0 + b1t+ b2t
2 + . . .+ bnt

n , the sum is defined as{
p+q

}
(t) = p(t)+q(t) = (a0+b0)+(a1+b1)t+ . . .+(an+bn)t

n

The scalar multiple cp is the polynomial defined by

cp(t) = ca0 + (ca1)t+ (ca2)t
2 + . . .+ (can)t

n

The axioms of a vector space are satisfied so Pn is a linear space.



Linear spaces: examples 18

5. Let F be a space of all real-valued functions defined on a
number space R .

Addition is defined as the function
{
f + g

}
with the value

equal to f(t) + g(t) ∀ t ∈ R

Scalar multiplication by c is defined as the function c f with
the value c · f(t) ∀ t ∈ R

Two functions are equal if their values are equal ∀ t ∈ R

The zero element in F is f0(t) ≡ 0 ∀ t ∈ R

The negative of f is f̄ such that f̄(t) = −f(t)

All the axioms are valid for F so it is a linear space.



Linear spaces: examples 19

6. A set M3
2 of all 2× 3 matrices of real numbers

M =

[
m11 m12 m13

m21 m22 m23

]
with the addition defined as the usual matrix addition, and
multiplication by a scalar defined as the usual multiplication
of a matrix by a scalar, — is a linear space.

All the axioms of the linear space are satisfied for this set.

Zero element in this linear space is the matrix of all zeros.

An example of operation with such elements:

−3 ·
[
0 1 −2
3 −4 5

]
+ 2 ·

[
−9 8 0
7 0 6

]
=

[
−18 13 6

5 12 −3

]

More generally, consider a linear space of m× n matrices.



Linear spaces: counter-examples 20

7. The set of all positive numbers with the usual addition and
multiplication is not a linear space: there is no zero element, and
no opposite element to satisfy the axioms (iii) and (iv).

8. Consider as set of polynomials of a degree equal to n = 3

p(t) = a0 + a1t+ a2t
2 + a3t

3 for t ∈ R

where coefficients a0 . . . a3 are real numbers, a3 ̸= 0 , with the
usual operations of summation and multiplication by scalars.

Take, for example, the sum of these two third-degree polynomials:

p1(t) = x3 + x2 − 3x+ 1 and p2(t) = −x3 + 2x− 2

p1(t) + p2(t) = x2 − x− 1

The result is not a third-degree polynomial.

Thus, definition is violated and the above set is not a linear space.



Linear spaces: examples 21

9. Consider all positive numbers: define “addition” as arithmetic
multiplication, and “multiplication by a scalar” as taking an
element to the power of that scalar.

For any positive numbers x, y, z > 0 , and any α, β ∈ R :

x⊕ y ≡ x · y > 0 and α⊙ x ≡ xα > 0

1 x⊕ y ≡ x · y = y · x ≡ y ⊕ x

2 (x⊕ y)⊕ z ≡ (x · y) · z = x · (y · z) ≡ x⊕ (y ⊕ z)

3 There is a “zero element” ∅ ≡ 1 : x⊕ ∅ ≡ x · 1 = x

4 There is an “opposite element” x̄ ≡ 1

x
: x⊕ x̄ ≡ x · 1

x
= 1 ≡ ∅

5 1⊙ x ≡ x1 = x

6 α⊙ (β ⊙ x) ≡ (xβ)α = xβα = xαβ ≡ (αβ)⊙ x

7 (α+ β)⊙ x ≡ x(α+β) = xα · xβ ≡ (α⊙ x)⊕ (β ⊙ x)

8 α⊙ (x⊕ y) ≡ (x · y)α = xα · yα ≡ (α⊙ x)⊕ (α⊙ y)

All the axioms are satisfied so for these operations this is a linear space!



Subspaces 22



Subspaces 23

Definition: A subspace H of a linear space V is a subset of
elements with the following properties:

H is closed under addition: ∀ (u,v) ∈ H, (u+ v) ∈ H

H is closed under multiplication by scalars:
∀u ∈ H and ∀ c ∈ R , cu ∈ H

Every subspace is a linear space and satisfies the axioms.

Property of any subspace: H includes the zero element of V

(proof: take c = 0 , then: 0 · v ∈ H , but 0 · v = 0 ⇒ 0 ∈ H )



Subspaces: examples 24

1 A set consisting of only the zero element of a linear space V
is a subspace of V and is called zero subspace {0} .

2 Consider space P of all polynomials with real coefficients,
with operations in P defined as for real-valued functions.
Then P is a subspace of the space F of all real-valued
functions operating on R , and Pn is the subspace of P .

3 A line within R2, not passing
through the origin, is not a
subspace of R2 — it does not
contain the 0 vector of R2.

4 A plane within R3, not including
the origin, is not a subspace of
R3 — this plane does not
contain the 0 vector of R3.



Subspaces: examples 25

5 The entire vector space R2 is not a subspace of R3 . Vectors
in R3 have three entries whereas vectors in R2 have two.
However, a set like

H =


 s

t
0

 , (s, t) ∈ R

is a subset of R3 that “looks” exactly like R2 .

Indeed, this subset is closed:
Any multiplication by a scalar or any
addition of two vectors, produces a
vector from this subset (because the
third component is always zero).



Subspaces: examples 26

6 Check if the set of all functions f(t) = a · 2(t+2)

is a subspace of the linear space of g(t) = b · 2t + c · 3t

where a, b, c, t ∈ R .

Any f(t) belongs to {g(t)} , whereby b = 4a and c = 0 .

Consider a sum of any two functions like f(t) :

f1(t) + f2(t) = a1 · 2(t+2) + a2 · 2(t+2) = (a1 + a2) · 2(t+2)

which belongs to {f(t)} (with a = a1 + a2 ).

Considering any f(t) multiplied by a scalar:

d · f(t) = d · (a · 2(t+2)) = (da) · 2(t+2)

we see the result belongs to {f(t)} (with a ↣ da).

Thus, the requirements for being a subspace are fulfilled.



Subspaces: examples 27

7 Check if the set of all polynomials such that p(0) = 1 ,
is a subspace of the linear space of all polynomials.

Any polynomial p(0) = 1 certainly belongs to the space P .

Consider the sum of any two such polynomials at point t = 0 :

p1(0) + p2(0) = 1 + 1 = 2

which is not a polynomial that equals to 1 for t = 0 .

This demonstrates that the set is not closed under addition
— therefore it is not a subspace of P .

Needless to say, it is also not closed under multiplication.



Questions on these topics? 28



Important: next week is unusual 29

1. No on-campus lecture next week

Instead: recordings on Canvas to study online

(it covers the revision of essential material:

vector and matrix algebra, linear systems, row reduction,

homogeneous and inhomogeneous systems)

2. Tutorials (1 March) take place in room CB04.04.321

Quick tests 1 are running next week on Friday (1 March)

(covering linear spaces and subspaces)

3. Next lecture on campus: 7 March


