Applications of linear algebra with a couple of examples

Applications of linear algebra

Linear algebra is one of the fundamental areas of mathematics.

- It is required everywhere mathematics is involved or hidden
- and not only where the analysis is explicitly linear:
 - Science
 - Mathematics
 - Astronomy
 - Physics
 - Chemistry
 - Biology
 - Statistics
 - Engineering (mechanical, electrical, ...)
 - Economics and business
 - Transport, logistics, ...
 - "Big Data" analysis, IT, AI, machine learning, ...

Applications of linear systems

On a practical level, one of the aspects is solving linear equations.

- Linear systems naturally arise in network analysis
- Network is a set of branches through which something "flows"
 - Electrical wires (electricity flow)
 - Economic linkages (money flow)
 - Pipes through which oil, gas or water flows
 - Fibres through which information flows (Internet)
- Branches meet at nodes or junctions
- A numerical measure is the rate of flow through a branch
- Analysis of networks is based on linear systems

Example: Electric circuits

Kirchhoff's law: Algebraic sum of voltage drops (V = RI) around a loop equals the algebraic sum of the voltage sources in the same direction around the loop: $\sum R_i I_i = \sum V_i$.

Summing for upper, middle and lower loops:

$$4I_{1} + 3I_{1} - 3I_{2} + 4I_{1} = 30$$

$$-3I_{1} + 3I_{2} + I_{2} + I_{2} - I_{3} + I_{2} = 5$$

$$-I_{2} + I_{3} + I_{3} + I_{3} = -5 - 20$$

$$\begin{cases}
11I_{1} - 3I_{2} = 30 \\
-3I_{1} + 6I_{2} - I_{3} = 5 \\
- I_{2} + 3I_{3} = -25
\end{cases}$$

$$\begin{bmatrix}
11 - 3 & 0 & | & 30 & | \\
-3 & 6 & -1 & | & 5 \\
0 & -1 & 3 & | & -25
\end{cases}$$

30

4Ω

1Ω

D | 1Ω

3Ω

4Ω

1Ω

Α

System solution yields loop currents: $I_1 = 3 \text{ A}$, $I_2 = 1 \text{ A}$, $I_3 = -8 \text{ A}$

- Total current in branch AB is $I_1 I_2 = 2 \text{ A}$
- Total current in branch CD is $I_2 I_3 = 9 \text{ A}$

Example: Balancing chemical equations

 $(x_1) C_3 H_8 + (x_2) O_2 \rightarrow (x_3) CO_2 + (x_4) H_2 O$

To find x_i such that the amount of each atom is preserved, associate each molecule with a vector, counting C, H, O atoms:

$$C_{3}H_{8}:\begin{bmatrix}3\\8\\0\end{bmatrix} \quad O_{2}:\begin{bmatrix}0\\0\\2\end{bmatrix} \quad CO_{2}:\begin{bmatrix}1\\0\\2\end{bmatrix} \quad H_{2}O:\begin{bmatrix}0\\2\\1\end{bmatrix}$$
Then $x_{1}\begin{bmatrix}3\\8\\0\end{bmatrix} + x_{2}\begin{bmatrix}0\\0\\2\end{bmatrix} = x_{3}\begin{bmatrix}1\\0\\2\end{bmatrix} + x_{4}\begin{bmatrix}0\\2\\1\end{bmatrix}$

$$3x_{1} \quad -x_{3} = 0$$

$$8x_{1} \quad -2x_{4} = 0 \quad \Leftrightarrow \begin{bmatrix}3 \quad 0 \quad -1 \quad 0 & | \ 0\\8 \quad 0 \quad 0 \quad -2 & | \ 0\\0 \quad 2 \quad -2 \quad -1 & | \ 0\end{bmatrix}$$

The solution of this system is $x_1 = 1$, $x_2 = 5$, $x_3 = 3$, $x_4 = 4$:

 $\mathrm{C_3H_8} + 5\,\mathrm{O_2} \ \rightarrow \ 3\,\mathrm{CO_2} + 4\,\mathrm{H_2O}$