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Matrix diagonalisation 2

Definition: Square matrix A is diagonalisable if A = PDP−1

where D is a diagonal matrix.

Theorem: n× n matrix A is diagonalisable if and only
if A has n linearly independent eigenvectors.

The columns of P are then the eigenvectors of A .

The diagonal entries of D are the eigenvalues of A
which correspond to the eigenvectors in P .

Corollary: A is diagonalisable if and only if its eigenvectors form
a basis of Rn (it is called the eigenvector basis).

Note: n× n matrix with n distinct eigenvalues is diagonalisable.

(caution: this is sufficient, but not necessary condition).
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Example: for A =

4 −1 6
2 1 6
2 −1 8

 , we know the eigenvalues

λ1 = 9 and λ2,3 = 2 , and three linearly independent eigenvectors11
1

 (for λ1) and

1⧸2
1
0

 ,

−3
0
1

 (for λ2,3)

Then A = PDP−1 where

P =

1 1⧸2 −3
1 1 0
1 0 1

 , D =

9 0 0
0 2 0
0 0 2

 , P−1 =
1

7

 2 −1 6
−2 8 −6
−2 1 1





Eigenvectors of symmetric matrices 4

Definition: matrix A is called symmetric if AT = A .

Theorem: If A is symmetric, then any two eigenvectors
from different eigenspaces (corresponding to
distinct eigenvalues) are orthogonal.

Proof: Let v1 and v2 be eigenvectors that correspond to
distinct eigenvalues λ1 ̸= λ2 . We must show that v1 · v2 = 0 .

λ1v1 · v2 = (λ1v1)
Tv2 = (Av1)

Tv2 = (vT
1A

T)v2 = (vT
1A)v2

= vT
1(Av2) = vT

1(λ2v2) = λ2vT
1v2 = λ2v1 · v2

Therefore (λ1 − λ2) v1 · v2 = 0.

But λ1 − λ2 ̸= 0 hence v1 · v2 = 0 .
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Definition: Matrix A is orthogonally diagonalisable if there are
an orthogonal matrix P (that is P−1 = PT ) and
a diagonal matrix D such that

A = PDPT

Note: If A is orthogonally diagonalisable then

AT =
(
PDPT

)T
=

(
PT

)T
DTPT = PDPT = A

and therefore A is symmetric. In fact (but not so quick to proove):

Theorem: An n× n matrix A is orthogonally diagonalisable
if and only if A is a symmetric matrix.
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Example: orthogonally diagonalise A =

 3 −2 4
−2 6 2
4 2 3


Solution: characteristic equation for this matrix is

0 = −λ3 + 12λ2 − 21λ− 98 = · · · = −(λ− 7)2(λ+ 2)

Eigenvalues are λ1,2 = 7 (with multiplicity 2), and λ3 = −2 .

A− 7I =

−4 −2 4
−2 −1 2
4 2 −4

 →

1 1⧸2 −1
0 0 0
0 0 0

 ⇒


−1

2
0

 ,

10
1


A+ 2I =

 5 −2 4
−2 8 2
4 2 5

 →

1 0 1
0 1 1⧸2
0 0 0

 ⇒


−2
−1
2





Orthogonal diagonalisation 7

v1 =

10
1

 and v2 =

−1
2
0

 are linearly independent but not orthogonal.

Use Gram-Schmidt process:

w2 = v2 −
v2 · v1

v1 · v1
v1 =

−1
2
0

− −1

2

10
1

 =

−1⧸2
2

1⧸2

 ; w′
2 =

−1
4
1


and then normalise the vectors for an orthonormal set:

u1 =
v1

∥v1∥
=

1/√2
0

1/
√
2

 , u2 =
w2

∥w2∥
=

−1/
√
18

4/
√
18

1/
√
18


The third eigenvector (for λ3 ) is automatically orthogonal to this pair
(why?) and we only need to normalise it:

v3 =

−2
−1
2

 ⇒ u3 =
v3

∥v3∥
=

−2⧸3
−1⧸3
2⧸3
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So the orthonormal set of eigenvectors is

u1 =

1/√2
0

1/
√
2

 , u2 =

−1/
√
18

4/
√
18

1/
√
18

 , u3 =

−2⧸3
−1⧸3
2⧸3



In this way, we have obtained P and D :

P =

1/
√
2 −1/

√
18 −2/3

0 4/
√
18 −1/3

1/
√
2 1/

√
18 2/3

 , D =

7 0 0
0 7 0
0 0 −2


and A = PDP−1 = PDPT.

Note: the order of eigenvalues in D can be different, but then the order
of columns in P must be changed accordingly.
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The set of eigenvalues of matrix A is called the spectrum of A .

Theorem:

An n× n symmetric matrix A has the following properties:

A has n real eigenvalues (if counting multiplicities);

The dimension of the eigenspace for each eigenvalue λ equals
the multiplicity of λ as a root of the characteristic equation;

The eigenspaces are mutually orthogonal (the eigenvectors
corresponding to different eigenvalues are orthogonal);

A is orthogonally diagonalisable: A = PDP−1 = PDPT.
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For an orthogonally diagonalisable matrix:

A = PDPT =
[
u1 . . . un

] λ1 0
. . .

0 λn


u

T
1
...

uT
n


= λ1u1uT

1 + λ2u2uT
2 + . . .+ λnunuT

n.

This is called a spectral decomposition of A .

Each decomposition term is an n× n matrix with rank 1.

Each matrix ujuT
j is a projection matrix:

for x ∈ Rn , vector ujuT
jx is the orthogonal projection

of x onto the subspace spanned by uj .
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Example: Spectral decomposition of matrix A =

[
7 2
2 4

]
:

Eigenvalues:

(7− λ)(4− λ)− 4 = λ2 − 11λ+ 24 = 0 ⇒ λ1 = 8, λ2 = 3

Eigenvectors:[
−1 2
2 −4

]
→

[
1 −2
0 0

]
⇒ v1 =

[
2
1

]
⇒ u1 =

[
2/
√
5

1/
√
5

]
[
4 2
2 1

]
→

[
2 1
0 0

]
⇒ v2 =

[
−1
2

]
⇒ u2 =

[
−1/

√
5

2/
√
5

]

So then P =
[
u1 u2

]
and

A = PDPT =

[
2/

√
5 −1/

√
5

1/
√
5 2/

√
5

] [
8 0
0 3

] [
2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
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A =

[
7 2
2 4

]
= PDPT =

[
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

] [
8 0
0 3

] [
2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]

Thus: A = 8u1uT
1 + 3u2uT

2 = 8

[
4/5 2/5
2/5 1/5

]
+ 3

[
1/5 −2/5

−2/5 4/5

]

Verifying this decomposition:

u1uT
1 =

[
2/
√
5

1/
√
5

] [
2/
√
5 1/

√
5
]
=

[
4/5 2/5
2/5 1/5

]

u2uT
2 =

[
−1/

√
5

2/
√
5

] [
−1/

√
5 2/

√
5
]
=

[
1/5 −2/5

−2/5 4/5

]

8u1uT
1 + 3u2uT

2 =

[
32/5 16/5
16/5 8/5

]
+

[
3/5 −6/5

−6/5 12/5

]
=

[
7 2
2 4

]
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Orthogonal diagonalisation is a very useful tool however only
symmetric matrices can be decomposed as A = PDPT .

There is a more general decomposition
possible for a non-square matrix A .

Note: ATA is symmetric and can be orthogonally diagonalised.

Let {u1, . . .un} be unit eigenvectors of ATA ,
and λ1, . . . λn be the corresponding eigenvalues. Then

∥Aui∥2 = (Aui)
TAui = uT

iA
TAui = uT

i(λiui) = λi(uT
iui) = λi

therefore all the eigenvalues of ATA are non-negative.

We can always rearrange them so that λ1 ⩾ λ2 ⩾ . . . ⩾ λn ⩾ 0.



Singular value decomposition: process 14

Definition: The singular values of A are the square roots of the
eigenvalues λ1, . . . λn of ATA , arranged in the descending order:

σi =
√

λi σi ⩾ σi+1

SVD: for an m× n matrix A with rank r , construct:

m× n matrix Σ with the first r diagonal entries being the
singular values of A : σ1 ⩾ σ2 ⩾ . . . ⩾ σr > 0 ; then zeros

n× n orthogonal matrix U =
[
u1 . . . un

]
where ui are the normalised eigenvectors of ATA

m×m orthogonal matrix W : wi =
Aui

σi
for 1 ⩽ i ⩽ r ,

extended to an orthonormal basis of Rm for r < i ⩽ m

Then A = WΣUT is a singular value decomposition of A .



Singular value decomposition: notes 15

The decomposition of A involves an m× n “quasi-diagonal”

matrix Σ =

[
D 0
0 0

]
, where D is an r × r diagonal matrix

(r ⩽ m & r ⩽ n).

The second “row” in Σ contains m− r rows.

The second “column” in Σ contains n− r columns.

The matrices U and W in A = WΣUT are not uniquely
defined by A but the diagonal entries in Σ are uniquely
determined (by the singular values of A).

The columns of W are called left singular vectors of A and
the columns of U are called the right singular vectors of A .

The singular values of A are the lengths of Aui vectors.



Singular value decomposition: example 16

Example: Construct a singular value decomposition of

A =

[
4 11 14
8 7 −2

]
Note: The transformation x 7→ Ax maps a unit sphere

{x : ∥x∥ = 1} in R3 onto an ellipse in R2 .



Singular value decomposition: example 17

Example: Construct a singular value decomposition of

A =

[
4 11 14
8 7 −2

]
Step 1: Construct an orthogonal diagonalisation of ATA .

ATA =

 4 8
11 7
14 −2

[
4 11 14
8 7 −2

]
=

 80 100 40
100 170 140
40 140 200


The eigenvalues of this matrix are λ1 = 360 , λ2 = 90 , λ3 = 0 .
The corresponding unit eigenvectors are:

u1 =

1/32/3
2/3

 , u2 =

−2/3
−1/3
2/3

 , u3 =

 2/3
−2/3
1/3

 .

Then U =
[
u1 u2 u3

]
=

1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

 .
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Step 2: Construct Σ using the singular values of A .

Given the found eigenvalues of A : λ1 = 360 , λ2 = 90 , λ3 = 0
the singular values of A are:

σ1 =
√
360 = 6

√
10, σ2 =

√
90 = 3

√
10, σ3 = 0

The non-zero σi form the diagonal sub-matrix D within Σ :

D =

[
6
√
10 0

0 3
√
10

]

Σ =

[
6
√
10 0 0

0 3
√
10 0

]



Singular value decomposition: example (remarks) 19

The first singular value of A is the maximum of ∥Ax∥ for all x
with ∥x∥ = 1 ; this is obtained when x = u1 :

Au1 =

[
4 11 14
8 7 −2

]1/32/3
2/3

 =

[
18
6

]
.

This is an ellipse point furthest from 0 ; the distance is σ1 = 6
√
10 :



Singular value decomposition: example (remarks) 20

The second singular value of A is the maximum of ∥Ax∥ over all
unit vectors orthogonal to u1 and this is achieved at x = u2 :

Au2 =

[
4 11 14
8 7 −2

]−2/3
−1/3
2/3

 =

[
3

−9

]
.

This is an ellipse point on the minor axis (distance σ2 = 3
√
10):
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Step 3: Construct W . When A has rank r the first r columns
of W are normalised vectors obtained from Au1, . . .Aur .
Matrix A has two non-zero singular values so rankA = 2 and

∥Au1∥ = σ1, ∥Au2∥ = σ2.

Thus the columns of W are

w1 =
Au1

σ1
=

1

6
√
10

[
18
6

]
=

[
3/
√
10

1/
√
10

]
w2 =

Au2

σ2
=

1

3
√
10

[
3

−9

]
=

[
1/
√
10

−3/
√
10

]
.

The set {w1,w2} is already an orthonormal basis for R2 , and so

W =

[
3/
√
10 1/

√
10

1/
√
10 −3/

√
10

]
.



Singular value decomposition: example 22

Thus the singular value decomposition of

A =

[
4 11 14
8 7 −2

]

is A = WΣUT =

=


3√
10

1√
10

1√
10

−3√
10


[
6
√
10 0 0

0 3
√
10 0

]
1⧸3

2⧸3
2⧸3

−2⧸3 −1⧸3
2⧸3

2⧸3 −2⧸3
1⧸3
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A = WΣUT can be rewritten as

A =
[
w1 . . . wm

]

σ1 0 0

. . . 0
0 σr 0 . . .
0 0 0 0

...
. . .


u

T
1
...

uT
n



= σ1w1uT
1 + σ2w2uT

2 + . . .+ σrwruT
r.

Original matrix A involves m× n values to be stored, whereas
this expansion requires (m× r + n× r + r) = r(m+ n+ 1) .
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Usually some of the singular values are very small so

A ≈ Ak = σ1w1uT
1 + σ2w2uT

2 + . . .+ σkwku
T
k,

where k < r is the rank of approximation; quite often k ≪ r .

In that case, the storage size is reduced to k(m+ n+ 1) ≪ m · n .

In this way, for example, an SVD-based image compression works.
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Definition: A quadratic form on Rn is a function Q defined as

Q(x) = xTAx : x ∈ Rn A = AT

where the n× n symmetric A is the matrix of the quadratic form.

Examples: (1) The simplest QF is: xT I x = xTx = ∥x∥2 .

(2) Let A =

[
4 0
0 3

]
, B =

[
3 −2

−2 7

]
, x =

[
x1

x2

]

xTAx =
[
x1 x2

] [4 0
0 3

] [
x1

x2

]
=

[
x1 x2

] [4x1

3x2

]
= 4x2

1 + 3x2
2

xTBx =
[
x1 x2

] [ 3 −2
−2 7

] [
x1

x2

]
=

[
x1 x2

] [ 3x1 − 2x2

−2x1 + 7x2

]
= x1(3x1 − 2x2) + x2(−2x1 + 7x2) = 3x2

1 − 4x1x2 + 7x2
2
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Examples:

(3) Q(x) = 5x21 − x1x2 + 3x22 + 8x2x3 + 2x23 x ∈ R3

Let us write this quadratic form as xTAx :

The coefficients of x21 , x
2
2 , x

2
3 provide the diagonal of A .

Then, to make A symmetric we split the coefficients of xixj
between the i, j and j, i matrix elements:

Q(x) = xTAx =
[
x1 x2 x3

]  5 −1/2 0
−1/2 3 4
0 4 2

x1x2
x3
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Theorem (the principal axes theorem):

For a given quadratic form xTAx there is a change of coordinates
(change of variable) x = Py that transforms it into a quadratic
form yTDy with a diagonal matrix D (no cross-product terms).

Proof: A = AT can be orthogonally diagonalised A = PDPT .
Change variables as x = Py , then y = P−1x = PTx . Then

xTAx = (Py)TA(Py) = yTPT(PDPT)Py = yTDy

and so the matrix in the quadratic form for y is diagonal.

Notes:

The columns of P are called the principal axes of the QF xTAx .

Principal axes form an orthonormal basis for Rn .
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Example: Q(x) = x21 − 8x1x2 − 5x22 ⇔ A =

[
1 −4

−4 −5

]
.

Let us find the principal axes and eliminate the cross terms.

The eigenvalues are λ1 = 3 , λ2 = −7 , and the unit eigenvectors

u1 =

[
2/
√
5

−1/
√
5

]
, u2 =

[
1/
√
5

2/
√
5

]
are orthogonal because A is symmetric and λ1 ̸= λ2 .

These vectors u1 and u2 are the principal axes of Q(x) .

P =

[
2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
, D =

[
3 0
0 −7

]
.

The change of variable is y = P−1x = PTx , and A = PDPT . So

x21 − 8x1x2 − 5x22 = xTAx = yTDy = 3y21 − 7y22
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Example: xTAx = c ( x ∈ R2, c ∈ R ) describes an ellipse,
hyperbola, parabola, two lines, single point, or no point.

If A is diagonal
then the graph is
in the standard
position.

A =

[
5 −2

−2 5

]

B =

[
1 −4

−4 −5

]
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A few examples of z = Q(x) for some typical cases (x ∈ R2 ):

Definition: A quadratic form Q is

(a) positive definite, if Q(x) > 0 ∀x ̸= 0 all λ > 0

(b) positive semidefinite, if Q(x) ⩾ 0 ∀x
(c) indefinite, if Q(x) takes positive and negative values

(d) negative definite, if Q(x) < 0 ∀x ̸= 0 all λ < 0

(e) negative semidefinite, if Q(x) ⩽ 0 ∀x
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This week: quick test 8

(fundamentals of orthogonality)

Next week:

Final class test (2 hours)

formally covers topics 8–10

but certainly implies the knowledge of previous topics


