FUNDAMENTALS AND APPLICATIONS OF LINEAR ALGEBRA

@ Diagonalisation and orthogonal diagonalisation of matrices

Spectral decomposition

Singular value decomposition

Quadratic forms



Matrix diagonalisation

Definition: Square matrix A is diagonalisable if A = PDP~!
where D is a diagonal matrix.

Theorem: n x n matrix A is diagonalisable if and only
if A has n linearly independent eigenvectors.
The columns of P are then the eigenvectors of A.
The diagonal entries of D are the eigenvalues of A

which correspond to the eigenvectors in P.

Corollary: A is diagonalisable if and only if its eigenvectors form
a basis of R™ (it is called the eigenvector basis).

Note: n x n matrix with n distinct eigenvalues is diagonalisable.



Matrix diagonalisation

4 -1 6
Example: for A = |2 1 6], we know the eigenvalues
2 -1 8
A1 =9 and A2 3 = 2, and three linearly independent eigenvectors
1 s -3
1| (for A\p) and 1|, 0 (for A23)
1 0 1

Then A = PDP~! where

1 1, -3 9 00 [ 2 1
P=|1 1 0|, D=|0 2 0], P_lz? -2 8
1 0 1 00 2 -2 1



Eigenvectors of symmetric matrices

Definition: matrix A is called symmetric if AT = A.
Theorem: If A is symmetric, then any two eigenvectors
from different eigenspaces (corresponding to

distinct eigenvalues) are orthogonal.

Proof: Let vq; and vy be eigenvectors that correspond to
distinct eigenvalues A1 # Ao. We must show that vi - vo = 0.

/\1V1 * Vo = ()\1V1)TV2 = (AVl)TVQ = (VTlAT)VQ = (VTlA)VQ

= Vi (Avy) = V] (A2v2) = AaVva = Aavy - Vo

Therefore (A — X\2) v -ve =0.

But Ay — Ao 7&0 hence vy - vog = 0.



Orthogonal diagonalisation

Definition: Matrix A is orthogonally diagonalisable if there are
an orthogonal matrix P (thatis P~! =PT) and
a diagonal matrix D such that

A = PDPT

Note: If A is orthogonally diagonalisable then
A"= (PDP") = (PT)'D'P" =PDP" = A
and therefore A is symmetric.

Theorem: An n x n matrix A is orthogonally diagonalisable
if and only if A is a symmetric matrix.



Orthogonal diagonalisation

3 -2 4
Example: orthogonally diagonalise A = |—2 6 2
4 2 3
Solution: characteristic equation for this matrix is
0=-A+12X2 =21\ - 98 =--- = —(A = 7)?(A +2)

Eigenvalues are A; o =7 (with multiplicity 2), and A3 = —2.

-4 -2 4 1 s -1 -1] [1
A-7T=|-2 -1 2 =0 0 0] = 2|, (0
4 2 —4 0 0 0 0] |1

5 —2 4 10 1 -2

A+2l=|-2 8 2| - |0 1 Lol =¢ (-1

4 25 00 0 2




Orthogonal diagonalisation

1 -1
vi= |0] and vo = 2| are linearly independent but not orthogonal.
1 0
Use Gram-Schmidt process:
-1 1 -15 -1
. -1
W2:V2—V2 V1V1: 2 -3 0] = 2 ;o owh = 4
Vitvi 0 1 1 1
and then normalise the vectors for an orthonormal set:
1/v/2 -1/v/18
w
il Rl A R s el A
! 1/v/2 2 1/V/18

The third eigenvector (for A3) is automatically orthogonal to this pair
(why?) and we only need to normalise it:

~2 —23

V3
vs il o Rl g
2 /3




Orthogonal diagonalisation

So the orthonormal set of eigenvectors is

1/v?2 ~1/V/18
ul[()], uy = 4/\/E]7 113|:
1/v2 1/4/18

In this way, we have obtained P and D:

1/vV2 —-1/V/18 —2/3 7
P=| 0 4/4/18 1/3], D= |0
1/vV2 1/v/18 2/3 0

and A = PDP~! = PDP".



Spectral theorem

The set of eigenvalues of matrix A is called the spectrum of A.
Theorem:
An n X n symmetric matrix A has the following properties:

@ A has n real eigenvalues (if counting multiplicities);

@ The dimension of the eigenspace for each eigenvalue A equals
the multiplicity of A as a root of the characteristic equation;

@ The eigenspaces are mutually orthogonal (the eigenvectors
corresponding to different eigenvalues are orthogonal);

@ A is orthogonally diagonalisable: A = PDP~! = PDPT.



Spectral decomposition

For an orthogonally diagonalisable matrix:
)\1 0 uE
A =PDP" = [u; ... u,) , :
0 An| (Ul

= )\111111T1 + )\nguTQ + ...+ )\nunuTn.

This is called a spectral decomposition of A..

@ Each decomposition term is an n x n matrix with rank 1.

@ Each matrix ujuTj is a projection matrix:

for x € R", vector ujuzj is the orthogonal projection
of x onto the subspace spanned by u;.



Spectral decomposition

Example: Spectral decomposition of matrix A = [; i] :

Eigenvalues:
(T—NE4 =X —4=X2—-11A+24=0 = X\ =8, I=3

Eigenvectors:
IR R R N ¥
R ol B S ]

So then P = [u; up] and

neror= [0 AR IR 44

11



Spectral decomposition 12

s i VS

4/5 2/5 1/5 —2/5
. _ T L —
Thus: A = 8uju] + 3ugu;, =8 [2/5 1/5] +3 [_2/5 4/5



Singular value decomposition

@ Orthogonal diagonalisation is a very useful tool however only
symmetric matrices can be decomposed as A = PDPT.

@ There is a more general decomposition
possible for a non-square matrix A.

Note: ATA is symmetric and can be orthogonally diagonalised.

Let {uj,...u,} be unit eigenvectors of ATA,
and Aq,...\, be the corresponding eigenvalues. Then

|Aw]? = (Au)TAw; = WATAw; = @ () = \i(dhw,) =\

therefore all the eigenvalues of AT A are non-negative.

We can always rearrange them so that Ay > X > ... 2 A\, > 0.

13



Singular value decomposition: process 14

Definition: The singular values of A are the square roots of the
eigenvalues Ay, ...\, of ATA, arranged in the descending order:

o=V = 0i20ip

SVD: for an m x n matrix A with rank r, construct:
@ m X n matrix X with the first r diagonal entries being the
singular values of A: 01 > 09 > ... > 0, > 0; then zeros
@ n x n orthogonal matrix U = [u; ... u,)
where u; are the normalised eigenvectors of ATA
. Auy; .
@ m x m orthogonal matrix W: w; = for1<i<r,
0;
extended to an orthonormal basis of R™ for r < i < m

Then A = WXUT is a singular value decomposition of A .



Singular value decomposition: notes 15

@ The decomposition of A involves an m x n “quasi-diagonal”
matrix X = [I()) 8] , where D is an r x r diagonal matrix
(r<m & r<n).
The second “row” in X contains m — 7 rows.

The second “column” in 3 contains n — r columns.

@ The matrices U and W in A = WXUT are not uniquely
defined by A but the diagonal entries in X are uniquely
determined (by the singular values of A).

@ The columns of W are called left singular vectors of A and
the columns of U are called the right singular vectors of A.

@ The singular values of A are the lengths of Au; vectors.



Singular value decomposition: example

Example:

Note:

4 11
A=l

14
-2

|

Construct a singular value decomposition of

The transformation x — Ax maps a unit sphere
{x: ||x|| = 1} in R3 onto an ellipse in R,

Multiplication
by A

16



Singular value decomposition: example 17

Example: Construct a singular value decomposition of

411 14
A‘E 7—J

Step 1: Construct an orthogonal diagonalisation of ATA .

4 8 80 100 40
ATA = |11 7E]$jﬂ:1m1m1m
14 —2 40 140 200

The eigenvalues of this matrix are Ay = 360, Ay = 90, A3 = 0.
The corresponding unit eigenvectors are:

1/3 —2/3 2/3
u; = 2/3 N ug = *1/3 s uz = *2/3
2/3 2/3 1/3

1/3 -2/3  2/3
Then U= |wuug|=|2/3 —-1/3 —2/3
2/3  2/3 1/3



Singular value decomposition: example 18

Step 2: Construct X using the singular values of A.

Given the found eigenvalues of A: A1 =360, Ao =90, A\3=0
the singular values of A are:

o1 = V360 =6v10, o09=+v90=3v10, o03=0

The non-zero o; form the diagonal sub-matrix D within X:

D_'m@ 0
1 0 3V10
5 6vV10 0 0
B 0 3V10 0



Singular value decomposition: example (remarks) 19

The first singular value of A is the maximum of ||Ax|| for all x
with [|x|| = 1; this is obtained when x = u;:

g 7 _of |23 =6l

1/3
4 11 14} 22 [18]

Au1:|:

This is an ellipse point furthest from 0; the distance is o1 = 64/10:

X
Multiplication +
by A W
/""'_'_'_.—‘_'_""‘"-H —~ h
// \;/ (18’ 6)
1 | | 1 | L | 1 L | 1 1 | L




Singular value decomposition: example (remarks) 20

The second singular value of A is the maximum of ||Ax|| over all
unit vectors orthogonal to u; and this is achieved at x = uy:

e[t 4 4 [ -3

This is an ellipse point on the minor axis (distance o2 = 3v/10):

X
Multiplication +
by A W
/""'_'_'_.—‘_'_""‘"H —~ h
/ // \;/ (18.6)
1 | | 1 | | 1 L | 1 1 | L




Singular value decomposition: example

Step 3: Construct W. When A has rank r the first » columns
of W are normalised vectors obtained from Auy,...Au,.
Matrix A has two non-zero singular values so rank A = 2 and

[Awi]| =01, [[Aug| = oo

Thus the columns of W are

o Awm 1 [18] B [3/@}
"o Teviol 6 1/vIo
oy Aw 1 [3}_{1/@]
*T o T avio 9] T [-3/vao)
The set {wy,ws} is already an orthonormal basis for R?, and so
3/V/10  1/V/10

W= L/m ~3/V10

21



Singular value decomposition: example
Thus the singular value decomposition of
A= [4 11 14}

8§ 7 =2

is A=wWxU'T =

22



Singular value decomposition

A = WXUT can be rewritten as

01 0 0
0 u
A=|wi...wy|| 0 or 0 :
0 0 00 na

= oywiuj + oawaul, + ... + oW, Ul

Original matrix A involves m x n values to be stored, whereas
this expansion requires (m x r+nxr+r)=r(m+n+1).

23



Singular value decomposition

Usually some of the singular values are very small so
A~ Ay = oywiu| + oowau), + ... + op WUy,
where k < r is the rank of approximation; quite often k < r.

In that case, the storage size is reduced to k(m+n+1) < m-n.

Rank 4 Rank 10 Rank 50 Rank 128

In this way, for example, an SVD-based image compression works.

24



Quadratic forms

25

Definition: A quadratic form on R™ is a function @) defined as

Q(x) = X' Ax : xeR" A=AT

where the n x n symmetric A is the matrix of the quadratic form.

Examples: (1) The simplest QF is: x" Ix = x'x = ||x]|2.

_ 4 0 _ 3 =2 |
SYRON P I R
4 0] [z 4zq 2

x'Ax = [a:l sr:g] [O 3} [zz} = [a:l mg] [3@} = 435% + 325

X'Bx = [17 23] {_g _3] [i;]

= 21(3xz1 — 220) + 2o(—2x1 + Tao) = 322 — dxy 1y + T2



Quadratic forms 26

Examples:
(3) Q(x)=>5z7 — x179 + 323 + 8woxs + 223 x € R?
Let us write this quadratic form as x"Ax:

2

The coefficients of a:% x5, $§ provide the diagonal of A.

Then, to make A symmetric we split the coefficients of z;z;
between the i,j and j,¢ matrix elements:

—1/2 0 T
Qx) =x"Ax = [331 T9 x3] —1/2 3 4| |zo
0 4 2 I3



Quadratic forms

Theorem (the principal axes theorem):

For a given quadratic form x"Ax there is a change of coordinates
(change of variable) x = Py that transforms it into a quadratic
form y"Dy with a diagonal matrix D (no cross-product terms).

Proof: A = AT can be orthogonally diagonalised A = PDPT.
Change variables as x = Py, then y = P~'x = PTx. Then

xX'Ax = (Py)' A(Py) = y'PT(PDPT)Py = y'Dy
and so the matrix in the quadratic form for y is diagonal.

Notes:

The columns of P are called the principal axes of the QF x"Ax.

Principal axes form an orthonormal basis for R™.

27



Quadratic forms

Example: Q(x) =27 —8r129 — 523 & A= [_le :;1] :

Let us find the principal axes and eliminate the cross terms.

The eigenvalues are \; = 3, Ay = —7, and the unit eigenvectors
N 2/v/5 w — 1/vV5
1= _1/\/5 9 2 = 2/\/5

are orthogonal because A is symmetric and A\; # \o.

These vectors u; and ug are the principal axes of Q(x).

o[ 4 ol )

The change of variable is y = P~'x = PTx, and A = PDP'. So

23 — 81119 — 525 = X'Ax = y' Dy = 3y? — Ty3

28



Quadratic forms

Example: XAx=c (x¢c€R? ccR) describes an ellipse,
hyperbola, parabola, two lines, single point, or no point.

Xz
: N . L If A is diagonal
\'T:_ _._.7"—‘/ then the graph is
t /I,;:: Wl " in the standard
e AN position.
ﬁ+ﬁz1.a>b>0 ﬁ—x—%zl,a>b>0
a b PR
5 —2
S
1 —4
Bl

(a) 5x3 - dx x, + 5x3 =48 (6 %2 -85, - 532 =16



Quadratic forms 30

A few examples of z = Q(x) for some typical cases (x € R?):

AT 2,
da S
7 x EReaie®
III;IIIIII;’,’ ' ‘\\““‘

*y

(a) z=3x7+7x2 (b) z=3x3 (c) z=3x2-7x2 (d) z=-3x2-7x2

Definition: A quadratic form Q@ is

(a) positive definite, if Q(x) >0 Vx#0 all A >0
(b) positive semidefinite, if Q(x) >0 Vx

(c) indefinite, if Q(x) takes positive and negative values

(d) negative definite, if Q(x) <0 Vx#0 all A< 0
(e) negative semidefinite, if Q(x) <0 Vx



Questions?

This week: quick test 8

(fundamentals of orthogonality)

Next week:

Final class test (2 hours)

formally covers topics 8-10

but certainly implies the knowledge of previous topics
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