UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 Linear Algebra

Exercises 11

Question 1

Using normal equations, obtain the least-squares solution	
to the system, and find the error of the approximation.	

	$2x_1 + x_2 = 3$
	$-x_1 + x_2 = -7$
1	$-3x_1 = 2$
	$1x_1 - x_2 = 3$

Question 2

Let

$\mathbf{A} =$	$\begin{bmatrix} 3\\1\\-1\\3 \end{bmatrix}$	$ \begin{array}{r} -5 \\ 1 \\ 5 \\ -7 \end{array} $	$\begin{bmatrix} 1\\1\\-2\\8 \end{bmatrix}$	(a) Find an orthogonal basis for Col A;(b) Construct a QR decomposition of A.
----------------	---	---	---	--

Question 3

Using the QR-decomposition approach, obtain a least-squares solution for system

$$\begin{cases} 3x_1 - 5x_2 + x_3 = 1\\ x_1 + x_2 + x_3 = -1\\ -x_1 + 5x_2 - 2x_3 = 4\\ 3x_1 - 7x_2 + 8x_3 = 1 \end{cases}$$

(use the QR-decomposition obtained with the previous question).

Hint: keep the arising square roots as common multipliers to facilitate calculations.

Question 4

Consider the following system of equations:

$$x_1 - x_2 = -1 2x_1 + x_2 = -3 x_1 + x_2 = 3$$

- (a) Find a least-squares solution to this system using normal equations
- (b) Calculate the least-squares error of the solution
- (c) Obtain a QR factorisation of the matrix of this system
- (d) Use the QR factorisation to obtain the least-squares solution