
Optional study materials

Approximate solutions: least-squares method

Orthogonal factorisation of matrices (QR)

Application of QR to least-squares method



Brief revision 2

Scalar product u · v ≡ uTv =
∑
i
uivi

Norm: ∥v∥ =
√
v · v and distance: dist(u, v) = ∥u− v∥

Orthogonal / orthonormal vectors, sets, bases

Orthogonal complements dimW⊥ + dimW = n

Orthogonal projections and decompositions

Gram-Schmidt process: v1 = x1 , then

vi = xi +

i−1∑
j=1

(
−xi · vj

vj · vj
vj

)
i = 2, . . . p
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Theorem: (the best approximation theorem)

Let W be a subspace of Rn , y ∈ Rn , and y̌ = projW y .

Then y̌ is the point in W closest to y in the sense that

∥y − y̌∥ < ∥y − v∥ ∀v ̸= y̌

The distance from y to W is given by ∥y̌ − y∥ .

Notes:

y̌ is called the best approximation to y by elements of W .

In a sense, we try to approximate y by some vector v ∈ W .

The distance from y to v , given by ∥y − v∥ , can be
regarded as the ‘error’ incurred by using v in place of y .

This error is minimised when v = y̌ .
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Definition: For an m× n matrix A and given b ∈ Rm ,
a least-squares solution of Ax = b is x̌ ∈ Rn

such that ∥b−Ax̌∥ ⩽ ∥b−Ax∥ ∀x ∈ Rn .

Take b̌ = proj(ColA) b , then b̌ ∈ ColA and ∃ x̌ : Ax̌ = b̌ .

In ColA , b̌ is the closest to b , so x̌ is a least-square solution.

Via orthogonal decomposition, b− b̌ is orthogonal to ColA , so

AT(b− b̌) = 0

AT(b−Ax̌) = 0

ATb−ATAx̌ = 0

ATAx̌ = ATb

System ATAx̌ = ATb is the normal system for Ax = b .

Its non-empty solution (set) is the least-squares solution (set).



Least-squares solutions 5

Example: Find a least-squares solution of the inconsistent system

A =

4 0
0 2
1 1

 , b =

 2
0

11


Solution:

ATA =

[
4 0 1
0 2 1

]4 0
0 2
1 1

 =

[
17 1
1 5

]

ATb =

[
4 0 1
0 2 1

] 2
0

11

 =

[
19
11

]

Then [
17 1
1 5

]
x̌ =

[
19
11

]
⇒ x̌ =

[
1
2

]
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With x̌ =

[
1
2

]
being the least-squares

solution, we can also calculate

the least-squares error ∥b−Ax̌∥:

Ax̌ =

4 0
0 2
1 1

[
1
2

]
=

44
3



b−Ax̌ =

 2
0

11

−

44
3

 =

−2
−4
8


so ∥b−Ax̌∥ =

√
84.
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Theorem: QR factorisation

An m× n matrix A with linearly independent columns can be

factorised as A = QR , where Q is an m×n matrix with columns

forming an orthonormal basis for ColA , and R is an n× n upper

triangular invertible matrix with positive entries on its diagonal.

Note: Since Q is an orthonormal matrix, QTQ = I .

Thus QTA = QT
(
QR

)
=

(
QTQ

)
R = IR = R ,

therefore R = QTA (which makes it easy to calculate).

Proof: by construction
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Proof: (QR factorisation)

The columns of A form a basis {a1, . . . an} for ColA .

An orthonormal basis {u1, . . . un} for ColA can be constructed
by using the Gram-Schmidt process; denote Q =

[
u1 . . . un

]
.

Then ∀ k = 1 . . . n : ak ∈ Span{a1, . . . ak} = Span{u1, . . . uk} ,
(as provided by the Gram-Schmidt process).

Therefore, there are constants r1k, . . . rkk , such that

ak = r1ku1 + . . .+ rkkuk + 0 · uk+1 + . . .+ 0 · un

(note that rkk ̸= 0 due to the Gram-Schmidt algorithm).

In case rkk < 0 , multiply rkk and uk by −1 so that all rkk > 0 .
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Rewrite ak = r1ku1 + . . .+ rkkuk + 0 · uk+1 + . . .+ 0 · un as

ak =
[
u1 . . . un

]


r1k
...

rkk
0
...
0


= Qrk

Using rk vectors, matrix R =
[
r1 . . . rn

]
is formed. Then

A =
[
a1 . . .an

]
=

[
Qr1 . . .Qrn

]
= QR

By construction, R is triangular with positive diagonal entries.

It can be shown that R is invertible because the columns of A are
linearly independent (consider Rx = 0 given that Ax = 0).
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Example:

Find a QR decomposition of: A =


1 0 0
1 1 0
1 1 1
1 1 1

 .

Solution: Earlier we have found an orthogonal basis for ColA as

v1 =


1
1
1
1

 , v2 =


−3
1
1
1

 , v3 =


0

−2
1
1

 .

Upon normalisation we obtain

Q =


1/2 −3/

√
12 0

1/2 1/
√
12 −2/

√
6

1/2 1/
√
12 1/

√
6

1/2 1/
√
12 1/

√
6

 .
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R = QTA =


1/2 −3/

√
12 0

1/2 1/
√
12 −2/

√
6

1/2 1/
√
12 1/

√
6

1/2 1/
√
12 1//

√
6


⊤ 

1 0 0
1 1 0
1 1 1
1 1 1



=

 1/2 1/2 1/2 1/2

−3/
√
12 1/

√
12 1/

√
12 1/

√
12

0 −2/
√
12 1/

√
6 1/

√
6




1 0 0
1 1 0
1 1 1
1 1 1


=

 2 3/2 1

0 3/
√
12 2/

√
12

0 0 2/
√
6

 .

So the QR factorisation is:
1 0 0
1 1 0
1 1 1
1 1 1

 =


1/2 −3/

√
12 0

1/2 1/
√
12 −2/

√
6

1/2 1/
√
12 1/

√
6

1/2 1/
√
12 1/

√
6


 2 3/2 1

0 3/
√
12 2/

√
12

0 0 2/
√
6


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Sometimes, ATA may be sensitive to round-off errors.
There is an alternative way to obtain least-squares solutions.

If A is an m× n matrix with linearly independent columns,
it can be QR-factorised as A = QR .

Then Ax = b has a unique least-squares solution ∀b ∈ Rm :

x̌ = R−1QTb

In practice, x̌ is obtained by solving

Rx̌ = QTb

which is straightforward since R is upper-triangular.
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Example (same matrix as for the QR example we had):

A =


1 0 0
1 1 0
1 1 1
1 1 1

 b =


0
0
0
2



We know A =


1/2 −3/

√
12 0

1/2 1/
√
12 −2/

√
6

1/2 1/
√
12 1/

√
6

1/2 1/
√
12 1/

√
6


 2 3/2 1

0 3/
√
12 2/

√
12

0 0 2/
√
6



QTb =

 1

2/
√
12

2/
√
6

 so

 2 3/2 1 1

0 3/
√
12 2/

√
12 2/

√
12

0 0 2/
√
6 2/

√
6

 →

 1 0 0 0
0 1 0 0
0 0 1 1



thus x̌ =

00
1

 and, given that Ax̌ =


0
0
1
1

 , the error is ∥b−Ax̌∥ =
√
2 .
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Good luck with your further studies!


