OPTIONAL STUDY MATERIALS

- Approximate solutions: least-squares method
- Orthogonal factorisation of matrices (QR)
- Application of QR to least-squares method

Brief revision

- Scalar product $\mathbf{u} \cdot \mathbf{v} \equiv \mathbf{u}^{\mathsf{T}} \mathbf{v} = \sum_{i} \mathbf{u}_{i} \mathbf{v}_{i}$
- Norm: $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ and distance: $\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$
- Orthogonal / orthonormal vectors, sets, bases
- Orthogonal complements $\dim W^{\perp} + \dim W = n$
- Orthogonal projections and decompositions
- Gram-Schmidt process: $\mathbf{v}_1 = \mathbf{x}_1$, then

$$\mathbf{v}_i = \mathbf{x}_i + \sum_{j=1}^{i-1} \left(-\frac{\mathbf{x}_i \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j} \mathbf{v}_j \right) \qquad i = 2, \dots p$$

Reminder: Best approximation theorem

Theorem: (the best approximation theorem) Let W be a subspace of \mathbb{R}^n , $\mathbf{y} \in \mathbb{R}^n$, and $\check{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$. Then $\check{\mathbf{y}}$ is the point in W closest to \mathbf{y} in the sense that

$$\|\mathbf{y} - \check{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \qquad \forall \, \mathbf{v} \neq \check{\mathbf{y}}$$

The distance from \mathbf{y} to W is given by $\|\check{\mathbf{y}} - \mathbf{y}\|$.

Notes:

- $\check{\mathbf{y}}$ is called the *best approximation* to \mathbf{y} by elements of W.
- In a sense, we try to approximate \mathbf{y} by some vector $\mathbf{v} \in W$.
- The distance from y to v, given by ||y v||, can be regarded as the 'error' incurred by using v in place of y. This error is minimised when v = y.

Least-squares solutions

Definition: For an $m \times n$ matrix **A** and given $\mathbf{b} \in \mathbb{R}^m$, a *least-squares solution* of $\mathbf{A}\mathbf{x} = \mathbf{b}$ is $\check{\mathbf{x}} \in \mathbb{R}^n$ such that $\|\mathbf{b} - \mathbf{A}\check{\mathbf{x}}\| \leq \|\mathbf{b} - \mathbf{A}\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbb{R}^n$.

Take $\check{\mathbf{b}} = \operatorname{proj}_{(\operatorname{Col} \mathbf{A})} \mathbf{b}$, then $\check{\mathbf{b}} \in \operatorname{Col} \mathbf{A}$ and $\exists \check{\mathbf{x}} : \mathbf{A}\check{\mathbf{x}} = \check{\mathbf{b}}$. In $\operatorname{Col} \mathbf{A}$, $\check{\mathbf{b}}$ is the closest to \mathbf{b} , so $\check{\mathbf{x}}$ is a least-square solution. Via orthogonal decomposition, $\mathbf{b} - \check{\mathbf{b}}$ is orthogonal to $\operatorname{Col} \mathbf{A}$, so

System $\mathbf{A}^{\mathsf{T}}\mathbf{A}\check{\mathbf{x}} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$ is the *normal system* for $\mathbf{A}\mathbf{x} = \mathbf{b}$. Its non-empty solution (set) is the least-squares solution (set).

Least-squares solutions

Example: Find a least-squares solution of the inconsistent system

$$\mathbf{A} = \begin{bmatrix} 4 & 0\\ 0 & 2\\ 1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 2\\ 0\\ 11 \end{bmatrix}$$

Solution:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$$
$$\mathbf{A}^{\mathsf{T}}\mathbf{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

Then

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \check{\mathbf{x}} = \begin{bmatrix} 19 \\ 11 \end{bmatrix} \qquad \Rightarrow \quad \check{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Least-squares solutions

With $\check{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ being the least-squares solution, we can also calculate the *least-squares error* $\|\mathbf{b} - \mathbf{A}\check{\mathbf{x}}\|$:

$$\mathbf{A}\check{\mathbf{x}} = \begin{bmatrix} 4 & 0\\ 0 & 2\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 2 \end{bmatrix} = \begin{bmatrix} 4\\ 4\\ 3 \end{bmatrix}$$
$$\mathbf{b} - \mathbf{A}\check{\mathbf{x}} = \begin{bmatrix} 2\\ 0\\ 11 \end{bmatrix} - \begin{bmatrix} 4\\ 4\\ 3 \end{bmatrix} = \begin{bmatrix} -2\\ -4\\ 8 \end{bmatrix}$$
so $\|\mathbf{b} - \mathbf{A}\check{\mathbf{x}}\| = \sqrt{84}.$

Theorem: QR factorisation

An $m \times n$ matrix **A** with linearly independent columns can be factorised as $\mathbf{A} = \mathbf{QR}$, where **Q** is an $m \times n$ matrix with columns forming an orthonormal basis for $\operatorname{Col} \mathbf{A}$, and **R** is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Note: Since Q is an orthonormal matrix, $Q^TQ = I$.

Thus
$$\mathbf{Q}^\mathsf{T} \mathbf{A} = \mathbf{Q}^\mathsf{T} ig(\mathbf{Q} \mathbf{R} ig) = ig(\mathbf{Q}^\mathsf{T} \mathbf{Q} ig) \mathbf{R} = \mathbf{I} \mathbf{R} = \mathbf{R}$$
 ,

therefore $\mathbf{R} = \mathbf{Q}^{\mathsf{T}} \mathbf{A}$ (which makes it easy to calculate).

Proof: by construction

Proof: (*QR* factorisation)

The columns of ${\bf A}$ form a basis $\{{\bf a}_1,\ldots\,{\bf a}_n\}$ for ${\rm Col}\,{\bf A}.$

An orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ for Col A can be constructed by using the Gram-Schmidt process; denote $\mathbf{Q} = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{bmatrix}$. Then $\forall k = 1 \dots n$: $\mathbf{a}_k \in \text{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_k\} = \text{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$,

(as provided by the Gram-Schmidt process).

Therefore, there are constants $r_{1k}, \ldots r_{kk}$, such that

$$\mathbf{a}_k = r_{1k}\mathbf{u}_1 + \ldots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \ldots + 0 \cdot \mathbf{u}_n$$

(note that $r_{kk} \neq 0$ due to the Gram-Schmidt algorithm). In case $r_{kk} < 0$, multiply r_{kk} and \mathbf{u}_k by -1 so that all $r_{kk} > 0$.

QR factorisation of matrices: proof

Rewrite $\mathbf{a}_k = r_{1k}\mathbf{u}_1 + \ldots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \ldots + 0 \cdot \mathbf{u}_n$ as

$$\mathbf{a}_{k} = \begin{bmatrix} \mathbf{u}_{1} & \dots & \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} r_{1k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{Q}\mathbf{r}_{k}$$

Using \mathbf{r}_k vectors, matrix $\mathbf{R} = ig[\mathbf{r}_1 \dots \mathbf{r}_nig]$ is formed. Then

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 \dots \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{Q} \mathbf{r}_1 \dots \mathbf{Q} \mathbf{r}_n \end{bmatrix} = \mathbf{Q} \mathbf{R}$$

By construction, \mathbf{R} is triangular with positive diagonal entries.

It can be shown that \mathbf{R} is invertible because the columns of \mathbf{A} are linearly independent (consider $\mathbf{Rx} = \mathbf{0}$ given that $\mathbf{Ax} = \mathbf{0}$).

QR factorisation of matrices

Example:

Find a QR decomposition of:
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

Solution: Earlier we have found an orthogonal basis for $\operatorname{Col} \mathbf{A}$ as

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0\\-2\\1\\1 \end{bmatrix}$$

Upon normalisation we obtain

$$\mathbf{Q} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}$$

٠

٠

QR factorisation of matrices

$$\mathbf{R} = \mathbf{Q}^{\mathsf{T}} \mathbf{A} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2\\ -3/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12}\\ 0 & -2/\sqrt{12} & 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 1 & 0\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3/2 & 1\\ 0 & 3/\sqrt{12} & 2/\sqrt{12}\\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}.$$

So the QR factorisation is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}$$

Least-squares solutions using QR

Sometimes, $\mathbf{A}^T \mathbf{A}$ may be sensitive to round-off errors. There is an alternative way to obtain least-squares solutions.

If A is an $m \times n$ matrix with linearly independent columns, it can be QR-factorised as A = QR.

Then Ax = b has a unique least-squares solution $\forall b \in \mathbb{R}^m$:

$$\check{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$$

In practice, $\check{\mathbf{x}}$ is obtained by solving

$$\mathbf{R}\check{\mathbf{x}} = \mathbf{Q}^{\mathsf{T}}\mathbf{b}$$

which is straightforward since \mathbf{R} is upper-triangular.

Least-squares solutions using QR

Example (same matrix as for the QR example we had):

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

We know
$$\mathbf{A} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}$$
$$\mathbf{Q}^{\mathsf{T}}\mathbf{b} = \begin{bmatrix} 1 \\ 2/\sqrt{12} \\ 2/\sqrt{6} \end{bmatrix} \text{ so } \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | \ 0 \\ 0 & 1 & 0 & | \ 0 \\ 0 & 0 & 1 & | \ 1 \end{bmatrix}$$

thus $\check{\mathbf{x}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and, given that $\mathbf{A}\check{\mathbf{x}} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, the error is $\|\mathbf{b} - \mathbf{A}\check{\mathbf{x}}\| = \sqrt{2}$.

Good luck with your further studies!