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Question 1

The matrix of the system is A = and the right-hand side is b =
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Please check that the system as such is indeed inconsistent (e.g. by row reduction).

Then ATA:[ls 0} and ATb:[lo]

0 3 -7
so by row reduction: 150710 — 10 2/3 = x= 2/3
Y oo 3|-7 0 1|-7/3 ~|-7/3

and we can find the error of this approximation
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Question 2

(a) Denoting the columns of A as a;, apply the Gram-Schmidt process
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(b) For QR decomposition we need to normalise v;; they have all the same length:
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(after the workshop, check back that QR = A).
Question 3
1
The right-hand side of the system is given by b = _111 . Then we solve Rx = Q"b:
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20 —40 30 |1 1 0 0] 7/8 7/8
0 20 -10|9 | — 1|0 1 0]21/40 = x = [21/40
0 0 2013 0 0 1| 3/20 3/20
The error of this approximation is
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Question 4

Denote the matrix of this system as A and the right-hand side as b.

(a) The normal equations for this system are obtained with

ATA = [g g] and A'b = {_4]

Row-reducing the augmented matrix yields

_ 6 2 —4 1 0 -1 N %= -1
0 7/3 7/3 0 1 1 !
which is the least-squares solution.

(b) The least-squares error is

1
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(¢) The columns of A are linearly independent, however not orthogonal; using the Gram-Schmidt process, the
second vector for an orthogonal basis of Col A is
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and then after normalising these vectors we obtain
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(d) The alternative path to the least-squares solution is by solving R%x = Q'b:
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which is, of course, the same unique solution as obtained in (a).
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