37233 Linear Algebra — revision

• Revision of the key topics

• Your questions?

- Matrix subspaces
- Scalar product and orthogonality; projections; orthogonal basis
- Diagonalisation and SVD
- Quadratic forms

Null, column, row spaces

For an $m \times n$ matrix **A**, the following subspaces are defined:

• Null space: all solutions to Ax = 0:

$$\operatorname{Nul} \mathbf{A} = \{ \mathbf{x} \, : \, \mathbf{x} \in \mathbb{R}^n \text{ and } \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

• Column space: all linear combinations of the columns of A:

$$Col \mathbf{A} = Span\{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$$
$$Col \mathbf{A} = \{\mathbf{b} : \mathbf{b} = \mathbf{A}\mathbf{x} \text{ for } \mathbf{x} \in \mathbb{R}^n\}$$

• Row space: all linear combinations of the rows of A:

$$\operatorname{Row} \mathbf{A} = \operatorname{Col} \mathbf{A}^{\mathsf{T}}$$

For a given $m \times n$ matrix **A**:

- Nul $\mathbf{A} \subset \mathbb{R}^n$; Col $\mathbf{A} \subset \mathbb{R}^m$; Row $\mathbf{A} \subset \mathbb{R}^n$.
- Col A = Span{a_i} and Row A = Span{z_i} (here Z = A^T) are explicitly defined. Nul A is implicitly defined by Ax = 0.
- There is no direct relation between Nul A and a_{ij} There is a direct relation between Col A, Row A and a_{ij}
- A vector of Nul A is obtained by solving Ax = 0.
 A vector of Col A is obtained as a linear combination of {a_i}, and of Row A as a linear combination of {z_i}.
- Checking if $\mathbf{v} \in \operatorname{Nul} \mathbf{A}$ is done by computing if $\mathbf{Av} = \mathbf{0}$ Checking if $\mathbf{v} \in \operatorname{Col} \mathbf{A}$ requires solving $\mathbf{Ax} = \mathbf{v}$ Checking if $\mathbf{v} \in \operatorname{Row} \mathbf{A}$ requires solving $\mathbf{A}^{\mathsf{T}}\mathbf{x} = \mathbf{v}$
- Nul $\mathbf{A} = \{\mathbf{0}\}$ if and only if $\mathbf{A}\mathbf{x} = \mathbf{0}$ only for $\mathbf{x} = \mathbf{0}$ Col $\mathbf{A} = \mathbb{R}^m$ if and only if $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\forall \mathbf{b} \in \mathbb{R}^m$ Row $\mathbf{A} = \mathbb{R}^n$ if and only if $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\forall \mathbf{b} \in \mathbb{R}^m$
- $\operatorname{Nul} \mathbf{A} = (\operatorname{Row} \mathbf{A})^{\perp}$ and $(\operatorname{Col} \mathbf{A})^{\perp} = \operatorname{Nul}(\mathbf{A}^{\mathsf{T}})$

Bases and dimensions for $\operatorname{Nul} \mathbf{A}$, $\operatorname{Col} \mathbf{A}$, and $\operatorname{Row} \mathbf{A}$

- A basis for $\operatorname{Nul} A$ is provided by linearly independent vectors spanning the solution of a homogeneous system Ax = 0.
- A basis for Col A is formed by pivot columns of a A.
 Warning: It is important that the pivot columns of A itself, and not those of the REF form, are a basis for Col A.
- A basis for Row A is formed by pivot rows of a A.
 Note: The row space of the REF of A is the same space.

By proceeding with solving $\mathbf{A}\mathbf{x} = \mathbf{0}$ we can establish:

- $\dim(\operatorname{Nul} \mathbf{A})$ is the number of free variables.
- $\dim(\operatorname{Col} \mathbf{A})$ is the number of pivot columns.
- $\dim(\operatorname{Row} \mathbf{A})$ is the number of pivot rows.
- rank $\mathbf{A} = \dim(\operatorname{Col} \mathbf{A}) = \dim(\operatorname{Row} \mathbf{A})$
- $\operatorname{rank} \mathbf{A} + \operatorname{dim}(\operatorname{Nul} \mathbf{A}) = n$ (given $m \times n$ matrix \mathbf{A})

The invertible matrix theorem (summary of results)

Statements equivalent to \mathbf{A} being an $n \times n$ invertible matrix:

- There is an $n \times n$ matrix A^{-1} such that $A^{-1}A = AA^{-1} = I$
- A has n pivot positions in the REF form
- $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution
- The columns (rows) of A form a linearly independent set
- The columns (rows) of $\mathbf A$ span $\mathbb R^n$
- The columns (rows) of $\mathbf A$ form a basis of $\mathbb R^n$
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is one-to-one
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
- $\operatorname{Col} \mathbf{A} = \operatorname{Row} \mathbf{A} = \mathbb{R}^n$
- $\operatorname{Nul} \mathbf{A} = \{\mathbf{0}\}$ and $\operatorname{dim}(\operatorname{Nul} \mathbf{A}) = 0$
- $\dim(\operatorname{Col} \mathbf{A}) = \dim(\operatorname{Row} \mathbf{A}) = n$
- rank $\mathbf{A} = n$
- ullet The eigenvalues of f A are non-zero

Scalar product, orthogonality, norm

For $\mathbf{v}, \, \mathbf{w} \in \mathbb{R}^n$, the product $\mathbf{v} \cdot \mathbf{w} \equiv \mathbf{v}^{\mathsf{T}} \mathbf{w} = \sum_{i=1}^n v_i w_i$

is called the *scalar product* (or inner product, or dot product).

$$\forall \{\mathbf{v}, \mathbf{w}, \mathbf{x}\} \in \mathbb{R}^{n}:$$
• $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
• $(\mathbf{v} + \mathbf{w}) \cdot \mathbf{x} = \mathbf{v} \cdot \mathbf{x} + \mathbf{w} \cdot \mathbf{x}$
• $(c \mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (c \mathbf{w}) = c (\mathbf{v} \cdot \mathbf{w})$
• $\mathbf{v} \cdot \mathbf{v} \ge 0$, and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$

Vectors are *orthogonal* $(\mathbf{v} \perp \mathbf{w})$ if and only if $\mathbf{v} \cdot \mathbf{w} = 0$.

The length, or *norm*, of v is:
$$\|v\| = \sqrt{v \cdot v} = \sqrt{v^{\mathsf{T}} v}$$
.

A *unit vector* has a unit norm (length): $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$

Orthogonal sets

Definition: A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is called an *orthogonal set* if each pair of vectors from the set is orthogonal:

$$\mathbf{u}_i \cdot \mathbf{u}_j = 0 \qquad \forall \ i \neq j$$

Definition: An orthogonal basis for a subspace V of \mathbb{R}^n is such a basis for V which is an orthogonal set.

Coordinates with respect to an orthogonal basis are easily found:

$$\mathbf{x} = c_1 \mathbf{u}_1 + \ldots + c_p \mathbf{u}_p$$
 has the weights $c_i = rac{\mathbf{x} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}$

Definition: A set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is called an *orthonormal set* if it is an orthogonal set of unit vectors.

The standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ for \mathbb{R}^n is an orthonormal set.

Orthogonal decomposition

Let W be a subspace of \mathbb{R}^n . Then $\forall \mathbf{y} \in \mathbb{R}^n$ there is a unique decomposition

$$\mathbf{y} = \check{\mathbf{y}} + \mathbf{z},$$

where $\check{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.

$$\check{\mathbf{y}} = \sum_{i=1}^{p} \frac{\mathbf{y} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \mathbf{u}_{i}$$
 and $\mathbf{z} = \mathbf{y} - \check{\mathbf{y}}$.

 $\check{\mathbf{y}} \equiv \operatorname{proj}_W \mathbf{y}$ is called the *orthogonal projection* of \mathbf{y} onto W.

For an *orthonormal* set: $\check{\mathbf{y}} = \mathbf{U}\mathbf{U}^{\top}\mathbf{y}$ (where $\mathbf{U} = [\mathbf{u}_1 \, \mathbf{u}_2 \, \dots \, \mathbf{u}_p]$).

Gram-Schmidt process

Given a basis $\mathbf{x}_1, \ldots, \mathbf{x}_p$ for a subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$
...
$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W.

In addition, $\operatorname{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ for $1 \leq k \leq p$.

Orthonormal basis is then obtained by normalising \mathbf{v}_i to unit vectors.

Orthogonal matrices

Definition: An orthogonal matrix \mathbf{U} is a square invertible matrix such that $\mathbf{U}^{-1} = \mathbf{U}^{\mathsf{T}}$.

Equivalent properties:

 $\bullet~{\bf U}$ has orthonormal columns and orthonormal rows:

$$\sum_{k=1}^{n} u_{ki} u_{kj} = \delta_{ij} \qquad \text{and} \qquad \sum_{k=1}^{n} u_{ik} u_{jk} = \delta_{ij}$$

 Given two different orthonormal bases in ℝⁿ, the change of basis matrices between such bases are orthogonal matrices.

Note: For an orthogonal matrix
$$\mathbf{U}$$
: $|\det \mathbf{U}| = 1$

Matrix diagonalisation

- If A has n linearly independent eigenvectors, $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ where
 - ${\ensuremath{\bullet}}$ diagonal entries of the diagonal matrix ${\ensuremath{\mathbf{D}}}$ are the eigenvalues
 - ${\ensuremath{\bullet}}$ columns of ${\ensuremath{\mathbf{P}}}$ are the corresponding eigenvectors of ${\ensuremath{\mathbf{A}}}$

A symmetric matrix \mathbf{A} is orthogonally diagonalisable as

 $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

with \mathbf{P} orthogonal ($\mathbf{P}^{-1} = \mathbf{P}^{\top}$) and \mathbf{D} diagonal matrices.

Diagonalisation procedure:

- Find the eigenvalues
- Ind the corresponding eigenvectors

Singular value decomposition

Definition: The singular values of \mathbf{A} are the square roots of the eigenvalues $\lambda_1, \ldots \lambda_n$ of $\mathbf{A}^{\mathsf{T}} \mathbf{A}$, arranged in the descending order:

$$\sigma_i = \sqrt{\lambda_i} \qquad \sigma_i \geqslant \sigma_{i+1}$$

SVD: for an $m \times n$ matrix **A** with rank r, construct:

m × n matrix Σ with the first r diagonal entries being the singular values of A: σ₁ ≥ σ₂ ≥ ... ≥ σ_r > 0; then zeros

•
$$n \times n$$
 orthogonal matrix $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_n]$
(with \mathbf{u}_i being the normalised eigenvectors of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$)

•
$$m \times m$$
 orthogonal matrix \mathbf{W} : $\mathbf{w}_i = \frac{\mathbf{A}\mathbf{u}_i}{\sigma_i}$ for $1 \leq i \leq r$,
extended to an orthonormal basis of \mathbb{R}^m for $r < i \leq m$

Then $\mathbf{A} = \mathbf{W} \Sigma \mathbf{U}^{\mathsf{T}}$ is a singular value decomposition of \mathbf{A} .

Quadratic forms

Definition: A quadratic form on \mathbb{R}^n is a function Q defined as

$$Q(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$
 : $\mathbf{x} \in \mathbb{R}^n$ $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$

where the $n \times n$ symmetric **A** is the *matrix of the quadratic form*.

The principal axes theorem:

For a given quadratic form $\mathbf{x}^T \mathbf{A} \mathbf{x}$ there is a change of variable $\mathbf{x} = \mathbf{P} \mathbf{y}$ that transforms it into a quadratic form $\mathbf{y}^T \mathbf{D} \mathbf{y}$ with a diagonal matrix \mathbf{D} (no cross-product terms).

Procedure:

- Orthogonally diagonalise $\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}}$
- 2 The required change of variables is $\mathbf{x} = \mathbf{P}\mathbf{y}$ and $\mathbf{y} = \mathbf{P}^{-1}\mathbf{x}$
- **③** The columns of \mathbf{P} are the *principal axes* of $\mathbf{x}^{T}\mathbf{A}\mathbf{x}$

Notes on the final test

- 110 minutes writing time plus 5 minutes technical time
- 3 problems covering the following main topics:
 - Matrix subspaces
 - Orthogonality, projections, orthogonal basis
 - Diagonalisation; spectral decomposition
 - Singular value decomposition
 - Quadratic forms
- Previous subject topics are still relevant (as solutions tools)

Advice for solving test problems

- Identify and attack the easiest problems first
- If stuck, change to the next problem and return at the end

• Keep to explicit radicals and rational fractions (e.g.
$$\frac{5}{\sqrt{3}}$$
, not "2.88675")

- If the numbers are getting really uncomfortable, something is probably wrong
- Articulate your solutions as much as practical (explain what you are doing)
- Check back the final answer where possible

Final class test

at the tutorials this week

Thank you for studying linear algebra, and good luck!