
37233 Linear Algebra — revision

Revision of the key topics

Your questions?



Key topics

Matrix subspaces

Scalar product and orthogonality; projections; orthogonal basis

Diagonalisation and SVD

Quadratic forms



Null, column, row spaces

For an m× n matrix A , the following subspaces are defined:

Null space: all solutions to Ax = 0 :

NulA = {x : x ∈ Rn and Ax = 0}

Column space: all linear combinations of the columns of A :

ColA = Span{a1, a2, . . . an}

ColA = {b : b = Ax for x ∈ Rn}

Row space: all linear combinations of the rows of A :

RowA = ColAT



For a given m× n matrix A:

NulA ⊂ Rn ; ColA ⊂ Rm ; RowA ⊂ Rn .

ColA = Span{ai} and RowA = Span{zi} (here Z = AT )
are explicitly defined. NulA is implicitly defined by Ax = 0 .

There is no direct relation between NulA and aij
There is a direct relation between ColA , RowA and aij

A vector of NulA is obtained by solving Ax = 0 .
A vector of ColA is obtained as a linear combination of {ai} ,
and of RowA as a linear combination of {zi} .
Checking if v ∈ NulA is done by computing if Av = 0
Checking if v ∈ ColA requires solving Ax = v
Checking if v ∈ RowA requires solving ATx = v

NulA = {0} if and only if Ax = 0 only for x = 0
ColA = Rm if and only if Ax = b has a solution ∀b ∈ Rm

RowA = Rn if and only if Ax = b has a solution ∀b ∈ Rm

NulA =
(
RowA

)⊥
and (ColA)⊥ = Nul

(
AT

)



Bases and dimensions for NulA, ColA, and RowA

A basis for NulA is provided by linearly independent vectors
spanning the solution of a homogeneous system Ax = 0 .

A basis for ColA is formed by pivot columns of a A .

Warning: It is important that the pivot columns of A itself,
and not those of the REF form, are a basis for ColA .

A basis for RowA is formed by pivot rows of a A .

Note: The row space of the REF of A is the same space.

By proceeding with solving Ax = 0 we can establish:

dim (NulA) is the number of free variables.

dim (ColA) is the number of pivot columns.

dim (RowA) is the number of pivot rows.

rankA = dim(ColA) = dim(RowA)

rankA+ dim(NulA) = n (given m× n matrix A)



The invertible matrix theorem (summary of results)

Statements equivalent to A being an n× n invertible matrix:

There is an n×n matrix A−1 such that A−1A = AA−1 = I

A has n pivot positions in the REF form

Ax = 0 has only the trivial solution

The columns (rows) of A form a linearly independent set

The columns (rows) of A span Rn

The columns (rows) of A form a basis of Rn

T̂ : x 7→ Ax is one-to-one

T̂ : x 7→ Ax maps Rn onto Rn

ColA = RowA = Rn

NulA = {0} and dim(NulA) = 0

dim(ColA) = dim(RowA) = n

rankA = n

The eigenvalues of A are non-zero



Scalar product, orthogonality, norm

For v, w ∈ Rn , the product v ·w ≡ vTw =
n∑

i=1
viwi

is called the scalar product (or inner product, or dot product).

∀ {v, w, x} ∈ Rn :

v ·w = w · v
(v +w) · x = v · x+w · x
(cv) ·w = v · (cw) = c (v ·w)

v · v ⩾ 0 , and v · v = 0 if and only if v = 0

Vectors are orthogonal (v ⊥ w) if and only if v ·w = 0 .

The length, or norm, of v is: ∥v∥ =
√
v · v =

√
vTv.

A unit vector has a unit norm (length): u =
v

∥v∥



Orthogonal sets

Definition: A set of vectors {u1, . . . up} in Rn is called an
orthogonal set if each pair of vectors from the set is orthogonal:

ui · uj = 0 ∀ i ̸= j

Definition: An orthogonal basis for a subspace V of Rn is
such a basis for V which is an orthogonal set.

Coordinates with respect to an orthogonal basis are easily found:

x = c1u1 + . . .+ cpup has the weights ci =
x · ui

ui · ui

Definition: A set {u1, . . . up} is called an orthonormal set
if it is an orthogonal set of unit vectors.

The standard basis {e1, . . . en} for Rn is an orthonormal set.



Orthogonal decomposition

Let W be a subspace of Rn.

Then ∀y ∈ Rn there is a
unique decomposition

y = y̌ + z,

where y̌ ∈ W and z ∈ W⊥.

If (and only if) {u1, . . . up} is any orthogonal basis in W ,

y̌ =

p∑
i=1

y · ui

ui · ui
ui and z = y − y̌.

y̌ ≡ projW y is called the orthogonal projection of y onto W .

For an orthonormal set: y̌ = UU⊤y (where U = [u1 u2 . . . up]).



Gram-Schmidt process

Given a basis x1, . . . xp for a subspace W of Rn , define

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
v1

v3 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2

· · ·

vp = xp −
xp · v1

v1 · v1
v1 −

xp · v2

v2 · v2
v2 − . . .− xp · vp−1

vp−1 · vp−1
vp−1

Then {v1, . . . vp} is an orthogonal basis for W .

In addition, Span{v1, . . . vk} = Span{x1, . . . xk} for 1 ⩽ k ⩽ p .

Orthonormal basis is then obtained by normalising vi to unit vectors.



Orthogonal matrices

Definition: An orthogonal matrix U is a square

invertible matrix such that U−1 = UT.

Equivalent properties:

U has orthonormal columns and orthonormal rows:

n∑
k=1

ukiukj = δij and
n∑

k=1

uikujk = δij

Given two different orthonormal bases in Rn , the change of
basis matrices between such bases are orthogonal matrices.

Note: For an orthogonal matrix U : | detU| = 1



Matrix diagonalisation

If A has n linearly independent eigenvectors, A = PDP−1 where

diagonal entries of the diagonal matrix D are the eigenvalues

columns of P are the corresponding eigenvectors of A

A symmetric matrix A is orthogonally diagonalisable as

A = PDP⊤ = PDP−1

with P orthogonal (P−1 = P⊤ ) and D diagonal matrices.

Diagonalisation procedure:

1 Find the eigenvalues

2 Find the corresponding eigenvectors

3 Form matrices D and P accordingly



Singular value decomposition

Definition: The singular values of A are the square roots of the
eigenvalues λ1, . . . λn of ATA , arranged in the descending order:

σi =
√

λi σi ⩾ σi+1

SVD: for an m× n matrix A with rank r , construct:

m× n matrix Σ with the first r diagonal entries being the
singular values of A : σ1 ⩾ σ2 ⩾ . . . ⩾ σr > 0 ; then zeros

n× n orthogonal matrix U =
[
u1 . . . un

]
(with ui being the normalised eigenvectors of ATA)

m×m orthogonal matrix W : wi =
Aui

σi
for 1 ⩽ i ⩽ r ,

extended to an orthonormal basis of Rm for r < i ⩽ m

Then A = WΣUT is a singular value decomposition of A .



Quadratic forms

Definition: A quadratic form on Rn is a function Q defined as

Q(x) = xTAx : x ∈ Rn A = AT

where the n× n symmetric A is the matrix of the quadratic form.

The principal axes theorem:

For a given quadratic form xTAx there is a change of variable
x = Py that transforms it into a quadratic form yTDy with a
diagonal matrix D (no cross-product terms).

Procedure:

1 Orthogonally diagonalise A = PDPT

2 The required change of variables is x = Py and y = P−1x

3 The columns of P are the principal axes of xTAx



Notes on the final test

110 minutes writing time plus 5 minutes technical time

3 problems covering the following main topics:

Matrix subspaces

Orthogonality, projections, orthogonal basis

Diagonalisation; spectral decomposition

Singular value decomposition

Quadratic forms

Previous subject topics are still relevant (as solutions tools)



Advice for solving test problems

Identify and attack the easiest problems first

If stuck, change to the next problem and return at the end

Keep to explicit radicals and rational fractions

(e.g.
5√
3
, not “2.88675”)

If the numbers are getting really uncomfortable,
something is probably wrong

Articulate your solutions as much as practical
(explain what you are doing)

Check back the final answer where possible



Good luck!

Final class test

at the tutorials this week

Thank you for studying linear algebra, and good luck!


