UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 LINEAR ALGEBRA

Final test help sheet

1

$(\mathbf{u} + \mathbf{v}) \in V$	$c \mathbf{u} \in V$
(i) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	$(\mathbf{v}) \qquad 1 \cdot \mathbf{u} = \mathbf{u}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	(vi) $c(d\mathbf{u}) = (cd)\mathbf{u}$
(iii) $\exists 0 : u+0 = u$	(vii) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iv) $\forall \mathbf{u} \exists (-\mathbf{u}) : \mathbf{u} + (-\mathbf{u}) = 0$	$c \mathbf{u} \in V$ (v) $1 \cdot \mathbf{u} = \mathbf{u}$ (vi) $c (d \mathbf{u}) = (c d) \mathbf{u}$ (vii) $(c + d) \mathbf{u} = c \mathbf{u} + d \mathbf{u}$ (viii) $c (\mathbf{u} + \mathbf{v}) = c \mathbf{u} + c \mathbf{v}$

The invertible matrix theorem — equivalent statements for $n \times n$ matrix A:

- There is an $n \times n$ matrix \mathbf{A}^{-1} such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- det $\mathbf{A} \neq 0$
- A has *n* pivot positions in the REF form
- $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution
- The columns (rows) of **A** form a linearly independent set
- The columns (rows) of **A** span \mathbb{R}^n
- The columns (rows) of **A** form a basis of \mathbb{R}^n
- \widehat{T} : $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is one-to-one
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
- The range of \widehat{T} : $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is \mathbb{R}^n
- $\operatorname{Col} \mathbf{A} = \operatorname{Row} \mathbf{A} = \mathbb{R}^n$
- Nul $\mathbf{A} = \{\mathbf{0}\}$ and dim(Nul $\mathbf{A}) = 0$
- $\dim(\operatorname{Col} \mathbf{A}) = \dim(\operatorname{Row} \mathbf{A}) = n$
- rank $\mathbf{A} = n$
- The eigenvalues of **A** are non-zero
- \mathbf{A}^{T} is invertible

$$l_{kk} = 1 \qquad \qquad k = 1, 2, \dots, n$$
$$u_{kj} = a_{kj} - \sum_{m=1}^{k-1} l_{km} u_{mj} \qquad \qquad k \leq j \leq n$$
$$l_{ik} = \frac{1}{u_{kk}} \left(a_{ik} - \sum_{m=1}^{k-1} l_{im} u_{mk} \right) \qquad \qquad k \leq i \leq n$$

$$u_{ii} = 1 i = 1, 2, ..., n$$

$$u_{ij} = \frac{1}{l_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \right) i < j = 2, 3, ..., n.$$

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} i \ge j = 1, 2, ..., n$$

For
$$i > j$$
: $u_{ij} = 0$
For $j = 2, 3, ..., n$: $u_{1j} = \frac{a_{1j}}{\sqrt{a_{11}}}$
For $i = 1, 3, ..., n$: $u_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} u_{ki}^2}$
 $\begin{cases}
\text{For } i = 2, 3, ..., n \\
j = i+1, i+2, ..., n
\end{cases}$: $u_{ij} = \frac{1}{u_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} u_{ki} u_{kj} \right)$

$$\mathbf{v}_i = \mathbf{x}_i - \sum_{j=1}^{i-1} \left(rac{\mathbf{x}_i \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j} \, \mathbf{v}_j
ight)$$

 $\mathbf{A} = \mathbf{Q}\mathbf{R} \qquad : \qquad \mathbf{R}\check{\mathbf{x}} = \mathbf{Q}^{\mathsf{T}}\mathbf{b} \qquad \Longleftrightarrow \qquad \mathbf{A}^{\mathsf{T}}\mathbf{A}\check{\mathbf{x}} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$

$$m \times n \quad \text{matrix} \qquad \mathbf{A} = \mathbf{W} \Sigma \mathbf{U}^{\mathsf{T}} = \begin{bmatrix} \mathbf{w}_1 \dots \mathbf{w}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \\ & \ddots & 0 & \\ 0 & \sigma_r & 0 & \dots \\ 0 & 0 & 0 & 0 & \\ & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\mathsf{T}} \\ \vdots \\ \mathbf{u}_n^{\mathsf{T}} \end{bmatrix} = \sum_{i=1}^r \sigma_i \mathbf{w}_i \mathbf{u}_i^{\mathsf{T}}$$

where $r = \operatorname{rank} \mathbf{A}$, and $\sigma_i = \sqrt{\lambda_i}$ $(\sigma_i \ge \sigma_{i+1} > 0)$, and \mathbf{u}_i are normalised eigenvectors of $\mathbf{A}^\mathsf{T} \mathbf{A}$, and $\mathbf{w}_i = \frac{\mathbf{A}\mathbf{u}_i}{\sigma_i}$ for $1 \le i \le r$, extended to an orthonormal basis of \mathbb{R}^m for $r < i \le m$.