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Question 1

Row-reducing the matrix of the system yields

−→

1 1 4 1
0 1 5 −1
0 0 0 0

 −→

1 0 −1 2
0 1 5 −1
0 0 0 0


so the general solution can be written as
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 ≡ x3v1 + x4v2 ∀x3, x4

and thus the above vectors v1 and v2 span the solution space of the system.

Question 2

Row-reducing the matrix of the system yields

−→

1 1 −1 −2
0 −3 −1 −1
0 0 −16 −16

 −→

1 0 0 −1
0 1 0 0
0 0 1 1


so the general solution for the homogeneous system can be written as

x =


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 ≡ tv, ∀ t ∈ R

The same row-reduction sequence over the (inhomogeneous) augmented matrix yields

−→

1 1 −1 −2 1
0 −3 −1 −1 5
0 0 −16 −16 −16

 −→

1 0 0 −1 4
0 1 0 0 −2
0 0 1 1 1


and by setting the free variable x4 = 0 a particular solution is obtained as
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 , so the complete solution is: x =
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 t ∈ R.


